
Contents

Welcome to HOSTACCESS , the product which gives you instant connectivity, terminal emulation and legacy application
rejuventation.This help system describes how to make the best use of HOSTACCESS’s Application Interface Facility (AiF).

The following topics provide you with the information you need to transform your host applications with floating toolbars, hotspots,
hot keys, mouse support, icons, pushbuttoms, secondary windows and graphs.

Click here for information on using this help system.

AiF TOOLKiT describes how to use the AiF to develop Graphical User Interface (GUI)-like applications.
AiF Utilities. This section describes how to use the AiF for screen manipulation and DOS library routines.
Dynamic Data Exchange (DDE) describes HOSTACCESSs DDE client/server support.
The Macro Language describes how to use HOSTACCESSs macro language.
Describing Images explains how you can describe button images in detail using Windows AiF escape sequences.

Using this help system

This help system is designed so that you can locate specific topics using three methods. When you first open the help, the Contents
tab is displayed. This has Contents, Index and Find tabs.Click on the Contents tab to find the topics split into subject areas, use the
Find tab to locate topics by word key and use the Index tab to find topics by index entry.

For Help on using the Contents tab, Click on the question mark in the top right hand corner, then click on the area that you need
help on.

When you have located the initial topic, the Contents tab will disappear. This can be reactivated at any time by clicking the Contents
button in the Help toolbar.

Topics within each section are ordered sequentially so you can move through them using the Browse buttons in the toolbar.

Most topics are cross referenced, which means that if you click on green text, or a button, you will be taken to a related topic.
Clicking on the Back button will return you to the original topic.

Disclaimer

Every effort has been made to ensure that the information contained within this publication is accurate and up-to-date. However,
Pixel Innovations Ltd. does not accept liability for any errors or omissions.

Pixel Innovations Ltd. continuously develops its products and services. We therefore reserve the right to alter the information within
this publication without notice. Any changes will be included in subsequent editions of this publication.

As the computing industry lacks consistent standards, Pixel Innovations Ltd. cannot guarantee that its products will be compatible
with any combination of systems you choose to use them with. While we may be able to help, you must determine for yourself the
compatibility in any particular instance of Pixel Innovations Ltd. products and your hardware/software environment.

Pixel Innovations Ltd. acknowledges that certain proprietary programs, products or services may be mentioned within this
publication. These programs, products or services are distributed under Trademarks or Registered Trademarks of their vendors
and/or distributors in the relevant country.

Your right to copy this publication, in either hard-copy (paper) or soft-copy (electronic) format, is limited by copyright law. You must
obtain prior authorization from Pixel Innovations Ltd. before copying, adapting or making compilations of this publication.

 Copyright Pixel Innovations Ltd.

Before GUI

After GUI

AiF TOOLKiT

To make use of HOSTACCESS¢s GUI facilities, you first need to use HOSTACCESS as terminal emulator to run your host
applications on your PC. Initially your host applications may continue to look and work as they have for years.

You can then choose the GUI functions available to transform your terminal screen. HOSTACCESS allows you to transform the
terminal screen itself, allowing you to completely transform the application¢s look and feel.

A wide range of functions known as the Applications Interface Facility (AIF) are available to all host developers which enables
you to use these features to create a true Windows GUI appearance for your host applications, with only a minimal amount of
coding.

You can use HOSTACCESS¢s Windows AiF to create and use:

Pushbuttons. Secondary windows.

Radio buttons. Toolboxes.

Check boxes Toolbars.

Edit boxes. String lists.

List boxes. Commands.

Combo boxes. Menus.

You can use these in a fully interactive fashion, reacting to user input. For example, you can detect whenever the user clicks on a
pushbutton, and react accordingly.

 How to send AiF escape sequences.
 Display Windows escape sequences.

Using Windows escape sequences

To use the Windows AiF, you send AiF escape sequences from the host to the PC. An escape sequence enables you to send
encoded signals to the host.

Any host process that can send output to a terminal can also use AiF by sending special AiF escape sequences to HOSTACCESS
running on a PC. HOSTACCESS intercepts these escape sequences and takes the appropriate action (for example, saving a
screen image).

Software developers normally define these AiF escape sequences so that they can be referenced globally as variables by their
applications code (either at run-time or compile time).

AiF escape sequences are standard ANSI X3.64 compliant escape sequences, belonging to the ANSI APC (Application Program
Command) class of sequences.

To use the Windows AiF properly, you should be familiar with the concept of controls. Controls are Windows objects that are held
in HOSTACCESS¢s memory which have associated names (control Ids).

Click here for information on managing controls.

Many Windows AiF escape sequences have control-id string parameters. Unless otherwise stated, you can assume that these
parameters refer to the relevant control ID as described here. A control-id is a unique identifier. You must define a control sequence
before it can be used in an escape sequence.

Controls can be defined in a list and then sent to HOSTACCESS from the host as a group.

Coding escape sequences.
Conventions for coding and screen layout.
 Windows escape sequences.

Format of Escape Sequences

HOSTACCESS expects AiF escape sequences to conform to a certain format. Every Windows AiF escape sequence starts with the
ESCape character (ASCII decimal value 27). Sequences take the following format:

ESC_nn ; Int1 ; Int2 ; ... Intn w String1 ; String2 ; ... Stringn ESC\

Where:

ESC Is the escape character.

_ Is an underscore character. This can be modified if
required.

nn Is the number of the particular Windows AiF escape
sequence you want to use. Click here for a
summary of Windows AiF escape sequences by number.

Int1 ... Intn Are integer parameters in the AiF escape sequence.
These parameters depend on the AiF escape sequence
and are always preceded by a delimiter.If the sequence
has no integer parameters, there are no delimiters before
the w character.

; Is the default delimiter character, although it can be
changed.

w Is a literal ¢w¢ character (signifying Windows). This must
be lower-case.

String1 ...
Stringn

Are string parameters in the AiF escape sequence. These
strings depend on the AiF escape sequence and are
separated by delimiters. Often, the first string will be the
ID of a control or object.

ESC\ Is the escape character, followed by \ (a backslash
character).

Delimiters are optional if their parameters are omitted. However, they are mandatory if used to indicate the order of a parameter.

For example, an AiF escape sequence has 3 optional parameters x, y, and z. You want to omit x and y from your sequence, using
the default values. However, you also want to use the z parameter. Therefore, you must have 3 delimiters preceding the z
parameter, to indicate it¢s position.

Note: one of the most common programming errors when using AiF escape sequences is to forget or misplace the required

delimiters

The conventions for coding and screen layout.
 Display Windows escape sequences.

Conventions used

The following conventions are used when coding escape sequences:

· String and integer parameters may be optional depending on the escape sequence. Optional parameters are shown enclosed in
braces - for example, {; enable}.

· Optional delimiters are also enclosed in braces.

· Default values for optional parameters are shown with asterisks. For example: 2* = do not enable means that the relevant
parameter takes the value 2 as a default.

· Control IDs are case insensitive. For example, OK.BUTTON is the same as ok.button.

· Do not use spaces when coding the escape sequences. Spaces are shown in the escape sequence descriptions for clarity only.

· All AiF escape sequence parameters are given labels for clarity.

· The following applies when returning values to the host:

STX Decimal value 02

CR Decimal value 13 (Carriage Return)

AiF Example

The following is a Windows AiF escape sequence:
ESC_1 {; enable} {; clear} w ESC\

This escape sequence has escape sequence number 1, takes two optional integer parameters, enable and clear and has no string
parameters. It turns sculpture mode on/off.

Click here for a full description.

Screen Layout

For clarity, the positioning and drawing of the screen is performed in a grid method. The top left hand corner of any window has the
grid co-ordinates of 1,1, and the bottom right can be 24, 80. Each character displayed upon the window takes up one cell, or grid
row and column position.

Co-ordinates are given as y, x, where y is the number of vertical characters down the screen, and x is the number of characters
across the screen.

Note: the top-left corner is position 1,1 - not position 0,0.

Many of the AiF escape sequences described in the following sections have y and x co-ordinates as parameters. Unless otherwise
stated, you can assume that these parameters use the standard y, x system as described here.

Coordinate diagram.

Escape Sequence Summary

Sculpture
ESC_1 Turns sculpture mode on or off.
ESC_2 Draws a sculpted box.
ESC_3 Draws a sculpted horizontal line.
ESC_4 Draws a sculpted vertical line.
ESC_5 Changing default colours.
Controls
ESC_1
0

Destroys a named control.

ESC_1
1

Enables/disables a named control.

ESC_1
2

Shows/hides named control(s).

ESC_1
3

Re-sizes and/or moves a control¢s window.

ESC_1
4

Changes a control¢s colours.

ESC_1
5

Sets/clears event reporting for named controls.

ESC_1
6

Sets input focus to a named control.

ESC_1
7

Sets input focus to an unknown control.

ESC_1
8

Uses groups of controls.

ESC_1
9

Returns a given string when an event occurs.

ESC_2
0

Sets control¢s accelerator character.

ESC_2
1

Sets the meaning of the <Return> key.

ESC_2
2

Copies an area of the screen.

ESC_2
3

Pastes a saved area of screen.

ESC_2
4

Clears all slots of saved screen regions.

ESC_2
5

Creates the root control.

ESC_2
6

Reads a value from the root control.

ESC_2
7

Manipulate the root control.

ESC_2
8

Miscellaneous control functions.

Secondary Windows
ESC_2
9

Secondary Windows manipulation.

Pushbuttons, check boxes and buttons
ESC_3
0

Creates a text pushbutton with a text label.

ESC_3
1

Creates an image pushbutton.

ESC_3
2

Displays an image.

ESC_3
3

Commands for toolboxes, toolbars, commands and
menus.

ESC_3
4

Creates a check box.

ESC_3
5

Creates a radio button.

ESC_3
6

Reads a value from a button.

ESC_3
7

Manipulates a button.

Lists, comboboxes and edit boxes
ESC_4
0

Creates/adds entries to/removes entries from string
lists.

ESC_4
1

Read a value from a string list.

ESC_4
2

Clearing a string list, setting special characters.

ESC_4
5

Creates a list box or combo box.

ESC_4
6

Reads a value from a list box or combo box.

ESC_4
7

Manipulates a list box or combo box.

ESC_5
0

Creates an edit box.

ESC_5
1

Reads a value from an edit box.

ESC_5
2

Manipulates an edit box.

ESC_5
3

Creates a static label.

ESC_7
0

Attach a validation to an edit box.

Miscellaneous
ESC_5
6

Changes the Windows pointer.

ESC_9
1

Creates a modal message box.

ESC_9
2

Sets status bar text.

ESC_9
3

Changes text font.

ESC_9
4

Status bar and Windows help functions.

ESC_9
5

Returns notification after a set time.

Coordinate system

Sculpting the Screen

You can use the following group of escape sequences to exploit the sculpture facilities of Windows:

Turning sculpture mode on/off.
Drawing sculpted boxes.
Drawing sculpted lines.
Changing default colours.

You can create raised or sunken images on your screen, with the 3-D effect of a stone sculpture. A sculpted image is produced by
shading sides of a picture, so when drawing a sculpted box , the top and left sides of the box are shaded one colour, and the bottom
and right sides of the box are shaded another colour.

For example, to produce an image of a sunken box, you would need to shade the top/left sides a dark colour, and the bottom/right
sides a light colour.

Because of the way HOSTACCESS sculpting works, you can have a full sculpted screen without losing any of your 24 by 80 display.
Sculpting works independently of your normal screen, so clearing the screen does not clear sculpture.

Colours

Colours for sculpted boxes and lines are chosen from HOSTACCESS¢s colour palette. This palette consists of colours 1 - 16 as
follows:

Number Colour Number Colour

1 black 9 dark grey

2 blue 10 light blue

3 green 11 light green

4 cyan 12 light cyan

5 red 13 light red

6 magenta 14 light magenta

7 brown 15 light brown

8 grey 16 white

When choosing colour, you can also choose the clear colour (number 17). This represents the colour of the current background,
and has the effect of clearing the relevant lines and/or boxes.

Turning Sculpture Mode on/off

To turn sculpture mode on/off, use the following AiF escape sequence:
ESC_1 {; enable} {; clear} w ESC\

Where:

enable 1 = disable sculpture mode.
2* = enable sculpture mode.

clear 0* = do not clear existing lines/boxes
1 = clear existing sculpted lines and boxes

Turning sculpture mode on or off does not affect the drawing of any sculpted boxes or lines. To draw a complete sculpted screen
very quickly, draw your screen, then set sculpture mode to on.

You can also use this escape sequence to just clear sculpted lines and boxes, without switching mode. Clearing lines and boxes
sets their border colour to clear.

Drawing Sculpted Boxes

To draw a sculpted box, use the following AiF escape sequence:
ESC_2 ; y ; x ; h ; wid {; col1} {; col2 ; col3} w ESC\

Where:

y y co-ordinate of top of box.

x x co-ordinate of left of box.

h Height of box, in characters (rows).

wid Width of box, in characters.

col1 Colour selection:
1* = use default sculpture colours.
2 = use default colours, reversed (for raised instead of
sunken appearance).
3 = use col2 and col3 parameters (below) to define colours.
4 = set to clear - clear the box from the screen.

col2 Palette colour of top and left sides of box. 1-17, ignored
unless col1 = 3. Click here for a description of the
colours.

col3 Colour of bottom and right sides of box. 1-17, Ignored unless
col1 = 3.

Example:

To draw a box at (10, 2), height 5, width 10, and colours 1 (top/left) and 16 (bottom/right), use:

ESC_2 ; 10 ; 2 ; 5 ; 10 ; 3 ; 1 ; 16 w ESC \

Drawing Sculpted Lines

To draw a sculpted horizontal line, use the following AiF escape sequence:
ESC_3 ; y ; x ; len {; col} w ESC\

Where:
y y co-ordinate of line origin.
x x co-ordinate of line origin.
len length of line, in characters.
col colour for line:

0* - default top/left colour.
Click here to find out how to change the default.
1..17 - colour number
Click here for a description of the colours.

To draw a sculpted vertical line, use the following AiF escape sequence:
ESC_4 ; y ; x ; len {; col } w ESC\

where y, x, len and col are as described above.

Examples

To draw a sculpted horizontal line at (12, 14), 10 characters (columns) long, with colour 1, use the following AiF escape sequence:
ESC_3 ; 12 ; 14 ; 10 ; 1 w ESC \

To draw a sculpted vertical line at (10, 31), 5 characters (rows) long, with colour 16, use the following AiF escape sequence:
ESC_4 ; 10 ; 31 ; 5 ; 16 w ESC \

Changing Default Colours

To change default sculpture colours, use the following AiF escape sequence:
ESC_5 ; top-left ; bot-right w ESC\

Where:

top-left Default top side and left side colour. 1..17: colour number.
Click here for a description of the colours.

bot-right Default bottom side and right side colour. 1..17, as
described above.

These colours will be used as defaults for all subsequent sculpted box and line drawing.

Example: Sculpted Drawing

The following diagram shows how you can use the sculpture features of the Windows AiF to produce lines and boxes. The example
turns sculpture mode on, and draws three sculpted boxes, then a sculpted horizontal line (in a box), and a sculpted vertical line (in a
box).

ESC_1 w ESC\
ESC_2 ; 10 ; 2 ; 5 ; 10 ; 3 ; 1 ; 16 w ESC\
ESC_2 ; 10 ; 14 ; 5 ; 10 ; 3 ; 1 ; 16 w ESC\
ESC_2 ; 10 ; 26 ; 5 ; 10 ; 3 ; 1 ; 16 w ESC\
ESC_3 ; 12 ; 14 ; 10 ; 1 w ESC\
ESC_4 ; 10 ; 31 ; 5 ; 16 w ESC\

Click here to see how this is displayed on your terminal window:

Sculpture example

Managing Controls

These sections deal with general manipulation of specific controls, which have names given by control-id parameters.

You can create control groups, containing several controls. These control groups are created with specific names - control group
IDs.

 Using control groups.
Enabling/disabling a control.
Showing/hiding a control.
Destroying a control.
Re-sizing/moving a controls window
Changing control colours.
Reporting events.
Setting input focus to a control.
Root control features.

Enabling/Disabling a Control

To enable or disable a named control (or control group), use the following AiF escape sequence:
ESC_11 {; enable} w control-id ESC\

Where:
enable 1 = disable control.

2* = enable control.
control-id Control ID or group ID.

Enabled controls will accept user input, disabled controls will not.

If you disable a control that currently has focus, or would have if the application were the active top level Window, then focus is
shifted to the root.

Note: disabled controls are not grayed out - they simply will not accept any user input.

Showing/Hiding a Control

To show or hide a named control (group) on the screen, use the following AiF escape sequence:
ESC_12 {; show} w control-id ESC\

Where:
show 1 = hide control

2* = show control
control-id Control ID or group ID.

If you hide a control that currently has focus, or would have if the application were the active top level Window, then focus is shifted
to the root.

Destroying a Control

To destroy a named control, string list or control group, use the following AiF escape sequence:
ESC_10 {; delete} w control-id ESC\

Where:
delete Use only if ID is that of a control group:

1 = do not delete controls inside group
2* = delete all controls in group.

control-id Control ID, string list ID or control group ID.
Destroying a control will flush it from HOSTACCESS¢s memory. The control is immediately removed from the screen.

If the specified control currently has focus, or would have focus if the application were the active top level Window, then focus is
shifted to the root.

Deleting a control group will by default delete all the controls in that group. To retain the controls, set the delete parameter to 1.

Re-sizing/Moving a Control¢s Window

To re-size and/or move a control¢s window, use the following AiF escape sequence:
ESC_13 ; y ; x ; h ; wid w control-id ESC\

Where:
y New y co-ordinate of top of control.
x New x co-ordinate of left of control.
h New height of control, in characters.
wid New width of control, in characters.
control-id Control ID.

If y and x are set to (0,0), then the window is not moved.

Changing Control Colours

To change the foreground, background and greyed colours for a control, use the following AiF escape sequence:
ESC_14 {; fore} {; back} {; grayed} w control-id ESC\

Where:
fore Foreground colour, in range 1..16. (*=16).
back Background colour, in range 1..16. (*=1).
grayed Grayed colour, in range 1-16. *=1.

Used by some controls when disabled.
control-id Control ID.

How the colours are used depends on the control type and contents. Text labels for buttons are always shown in the foreground
colour (unless the control is disabled).

Reporting Events

When an event is reported to the host, information about that event is sent in the following format:
<STX> WC<CR> id , event{, Argument} <CR>

Where:
WC Literal characters.
id Control ID of control associated with the event or ? if no

event available.
event Event number - see Event Numbers Defined.
Argument Optional argument associated with event.

Event numbers defined.
Enabling event reporting.
Getting events.

Event Numbers Defined

Currently defined event numbers are:

1 ENTER pressed.

2 ESCape pressed.

3 Button clicked.

4 Check box or radio button check state change.

Argument: 1 = button is now unchecked, 2 = button now checked.

5 Contents of edit box, or the contents of the edit box part of simple &
dropdown combo boxes, have been changed by user.

Argument: edit box contents, escape sequence number 1, click
 here to find out the format.

6 List box selection change.

Argument: host string of newly selected item, or “?” if nothing
selected.

7 List box double click.

Argument: host string of double clicked item.

8 FOCUS: sent whenever the user changes focus from one control to
another.

Returns 4 parameters: old control (string label), event (1=ENTER,
3=CLICKED, 9=TABBED), New control (string label) and Amend
flag (set to 2 if old control had changed since it gained focus,
otherwise 1).

9 TAB: control has been tabbed from.

10 CLICKEDON: left mouse down event over control when a different
control, or the root, had the focus, resulting in focus moving to the
clicked on control.

Argument: ID of control that has just lost the focus.

11 Secondary Window activate: the user is changing focus from a
secondary window.

12 Secondary Window close: the user is trying to close a secondary
window.

13 LISTBOX: tells host when a user scrolls off the end of a partially
displayed string list.

Enabling Event Reporting

You can set or clear specific event reporting for named controls or control groups. For example, you could disable reporting for
Return keys pressed by the user.

To set/clear event reporting for controls/groups, use the following AiF escape sequence:
ESC_15 {; enable} ; event1 ... w control-id1 ... ESC\

Where:
enable 1 = disable events.

2* = enable events.
3 = stack events.

event1 ... Event number - see Event Numbers Defined.
control-id1 ... Is the control ID or control group ID.

Examples

To disable button click reporting for button with ID ¢but1¢, use the following AiF escape sequence:
ESC_15 ; 1 ; 4 w but1 ESC\

To enable enter key and button click reporting for button with ID ¢helpbut¢, use
ESC_15 ; 2 ; 1 ; 3 w helpbut ESC\

Requesting events for use with stacked events.

When you enable an event you can specify that the events are stacked. This means the events are not reported until your program
is ready to receive the event. Then you can send an escape sequence to get the next event from the stack.

To request an event from the stacked event handling system, use the following AiF escape sequence:
ESC_6 ; mode w {control_id} ESC\

Where:

mode 1= Get next stacked event. Wait if no event is available.

2= Get next stacked event. Return if no event is available.

3= Get last reported stacked event.

4= Flush event stack.

Control_id If mode is 1 or 2, control_id is optional and takes events only
from that named control. Control_id is not relevant for modes
3 and 4.

Getting events

ESC_6 ; {wait_code} w { control_id } ESC \

Where:

wait_code 1 = get next event. Don't respond until an event is generated.

2 = get next event, or return immediately.

3 = get last event.

4 = flush all events.
control-id1 ... Is the control ID or control group ID.

If control_id is specified, then the command applies only to that control. If it is not specified, then it applies to all controls.

Click here for information on the return code format.

Setting Input Focus to a Named Control

To set the input focus to a named control, use the following AiF escape sequence:
ESC_16 w control-id ESC\

Where:
control-id Is the control ID.

If the ID given does not match a known control, or it is the string “root”, focus is returned to the background terminal characters.

Setting Input Focus to an Unknown Control

To set input focus to the next/previous control in the tabbing order, use the following AiF escape sequence:
ESC_17 ; direction w ESC\

Where:
direction 1 = set the input focus to the previous control.

2* = set the input focus to the next enabled and visible
control.

If there are no such controls, focus will be left with the root.

Using Control Groups

You can create control groups, holding several different controls, for ease of use. Once you have created groups of controls, you
can use any of the generic control management facilities documented in this section on entire control groups (for example,
showing/hiding controls).

To add or remove controls to/from a control group , use the following AiF escape sequence:
ESC_18 ; add w group-id ; control-id1 ... ESC\

Where:
add 1 = remove one or more controls from a control group

2* = add one or more controls to a control group.
group-id Control group ID.
control-
id1

Individual control ID(s).
You have to define (create) each control ID separately
before using it with a control group.

Creating a Control Group

To create a new control group, add one or more controls to a group with the required ID, and the group will be automatically created.

Example

To create a control group named buttons, holding the controls radio1, radio2 and check1, use the following AiF escape sequence:
ESC_18 ; 2 w buttons ; radio1 ; radio2 ; check1 ESC\

To delete the control radio2 from that control group, use the following AiF escape sequence:
ESC_18 ; 1 w buttons ; radio2 ESC\

Returning an Alternate Message

To tell a control to return a different string to the host when the given event occurs for which reporting is enabled, use the following
AiF escape sequence:

ESC_19 ; event ; class w control-id ; message ESC\

Where:
event Event number.

Click here for details.
class 1* Send message back as a string (default behaviour)

2 Treat message as the name of a macro file to execute.
control-id Control ID.
message Alternate message.

When an alternate string is set, it will be sent to the host unmodified. It will not have a CR sent after it.

For example, to cause a single character, ¢X¢, to be sent to the host when the ¢ed¢ control has been tabbed to (tab = event number
9), use:

ESC_19 ; 9 w ed ; X ESC\

Setting the Accelerator Character

To set the accelerator character for a named control, use the following AiF escape sequence:
ESC_20 w control-id ; accel ESC\

Where accel is the accelerator character.

This allows the control to receive the focus when the user presses Alt + the given key, but only when the control is capable of
accepting the focus, and keystrokes are being processed by controls (if the root has the focus, they may not be). This does not
change the visual appearance of the control at all.

It is usual to indicate to the user what the accelerator key is by underlining it in the label nearest the control.

In the case of button controls (push, check and radio), there is no need to issue this escape, since the accelerator key will be set
automatically by searching the label for the first & prefixed character.

Example

To allow Alt/E to be the accelerator key for control with ID ¢edit¢, use:
ESC_20 w edit ; E ESC\

Setting the Return Key Meaning

Normally, pressing a Return key reports a RETURN event to the host.

To set the event returned (for a named control), use the following AiF escape sequence:
ESC_21 ; meaning w control-id ESC\

Where:
meaning 1 = set RETURN event returned to be a TAB

2 = set RETURN event returned to be a RETURN (i.e.
default return behaviour).

control-id Control ID.

Copying an area of the screen

The following sequence copies a rectangular region of the screen, complete with sculpting, into a specified slot.
ESC_22 ; slot ; x ; y ; right ; bottom ; option w ESC\

Where:

slot Slot number. The minimum is 0, the maximum is 255. If the
slot is already in use, it is overwritten with the new region. If
the option specified is 1, then the region is also cleared of
text and sculpting.

x x co-ordinate of rectangle.

y y co-ordinate of rectangle.

right x right coordinate of rectangle.

bottom y bottom coordinate of rectangle .

option Choose one of the following options:

0 = Leave rectangle.

1 = Clear rectangle and save.

2 = Clear rectangle only.

Pasting a copied region of screen

 The following sequence pastes a region of screen copied into a slot using ESC_22 to either the position from which the region was
saved, or at new co-ordinates if specified.

ESC_23 ; slot ; x ; y w ; esc\

Where:

slot Slot number to restore. If an unused slot is specified, a journal
message will be generated and the action ignored.

x x co-ordinate where the saved region of screen will be pasted
to. If x and y are left blank, the region will be pasted to the
position from which the region was copied.

y y co-ordinate where the saved region of screen will be pasted
to. If x and y are left blank, the region will be pasted to the
position from which the region was copied.

Note: the region specified by x and y must be visible on the screen, offscreen regions will be ignored.

Clearing slots of copied screen regions

The following sequence clears all slots of screen regions copied using ESC_22.
ESC_24 w ESC\

Root Control Features

This section describes some escape sequences that may be used to manage the ¢root¢ control. This is not really a control at all, but
an interface to manipulate behavioral aspects of the underlying terminal character display area in so far as they relate to embedded
controls.

To use these functions, you must first create the one and only ¢root control¢. Once created, subsequent attempts to create it are
ignored.

Once created, you can use some of the standard control management escapes on it (such as the event management escape, if you
¢re interested in, say, when the root is tabbed to).

Creating the root control.
Reading from the root control.
Manipulating the root control.
Naming a base control group.
Setting default foreground/background colours.
Forcing palette reconstruction.

Creating the Root Control

To create the one and only ¢root¢ control, use the following AiF escape sequence:
ESC_25 w ESC\

It has the fixed ID. string ¢root¢.

Reading From the Root Control

To read a value from the ¢root¢ control, use the following AiF escape sequence:
ESC_26 ; 1 w ESC\

A value will be returned to the host. The value returned is the ¢tab in permitted¢ state of the root, sent in the following format:
<STX>value<CR>

Where:

value 1 = tab-in is permitted.
2 = tab-in is not permitted.
? = error detected.

Manipulating the Root Control

To disable or enable ¢tab-in¢ to the root, use the following AiF escape sequence:
ESC_27 ; 1 ; tabin w ESC\

Where:

tabin 1 = disable ¢tab-in¢ to the root.
2* = enable ¢tab-in¢.

Naming a Base Control Group

To name a control group to which all subsequently created controls will be automatically added, use the following AiF escape
sequence:

ESC_28 ; 1 w group ESC\

Where:

group The name of the control group. If this control group does
not exist, it is created.

Setting Default Foreground/Background Colours

To set the default foreground and background colours for use when subsequent controls are created, use the following AiF escape
sequence:

ESC_28 ; 2 {; fore} {; back} {; grayed} w ESC\

Where:
fore Foreground colour, in range 1-16. *=16.
back Background colour, in range 1-16. *=1.
grayed Grayed colour, in range 1-16. *=5, for subsequently

created controls.

Forcing Palette Reconstruction

To force palette reconstruction (back to the original default setup), use the following AiF escape sequence:
ESC_28 ; 3 w ESC\

This is useful in some situations after removing/adding 256 colour bitmaps. All controls showing bitmaps will be redrawn when this
happens

Secondary Windows

You create secondary windows inside your main terminal window. If the secondary window has been correctly defined and is
activated, the user can perform normal Windows manipulation functions, such as:

· Entering data.

· Minimizing/maximizing the window.

· Re sizing and re-positioning the window.

This section describes how to create, destroy, activate, hide and show secondary windows. .

Scaling

You can scale secondary windows, by defining the number of columns and rows in the window, then defining the window¢s actual
size. By default, the scaling is 1, and the secondary window is created just large enough to hold the terminal window inside it.

Creating a Secondary Window

To create a secondary window, use the following AiF escape sequence:
ESC_29 ; 1 ; top ; left ; h1 ; wid1 {; wid2} {; h2} {; fg} {; bg} {; mod} {; bord} {; bar} {; min} {; max} {; orig} {; size} {;
page} w id ; title ESC\

Where:

top Window top. Cell offset.

Note:
When orig = 1, this is the pixel row of the top/left of the
window, i.e. one more than the number of pixels visible
above the top of the sub window frame.

When orig = 2, this is one more than the number of pixels
of the application window, including the window frame,
visible above the top/left of the window frame.

When orig = 3, this is the row/column number measured
in character cells within the base window of the top row/
first column of characters in the subwindow. The window
border is drawn above this position.

left Window left. Cell offset. See note in top.

h1 Number of columns in terminal window. If h1 and wid1 is
smaller than h2 and wid2, the font will be scaled down so
the correct number of cells will still appear in the
subwindow.

wid1 Number of rows in terminal window. If h1 and wid1 is
smaller than h2 and wid2, the font will be scaled down so
the correct number of cells will still appear in the
subwindow.

wid2 Window width - use to scale the window horizontally.

When size = 2 and wid2 is smaller than wid1, the
subwindow is initially drawn with a width of wid2
character cells (measured by the cell size of the base
window). If size = 1 or wid2 is greater than wid1, wid2
and h2 will have no effect.

h2 Window height - use to scale the window vertically.

fg Foreground colour of terminal window 1..16, *=16

bg Background colour of terminal window 1..16, *=1

mod Modality: 1 = modeless, 2* = modal.

bord Border type: 1 = none; 2* = thin, not resizable, 3 = thick,
resizable.

bar Title bar type: 1 = none; 2* = normal.
If you have a title bar, a default thin border is used by
default, although you can have a thick border using bord.

min 1*= do not show a minimize box.
2 = show a minimize box.
3 = do not show a minimize box but show close.
4 = show minimize and close.

max 1*= do not show a maximize box.
2 = show a maximize box.
3 = Do not show maximize box and create the window
hidden.
4 = Show maximize box and create the window hidden.

The window will become modeless if windows are created
hidden

orig Window position:
1 = relative to the screen, in pixels.
2 = relative to the application window, in pixels.
3* = relative to the main terminal window, in character
cells.

size Interpretation of secondary window size:
1 = pixel size of whole window, including non-client parts.
2* = size in cells of the displayed terminal window, to
which the non-client parts are added.

page Specify the number of backpages where:

0* =an active page and the number of backpages which
have been specified in Configure, Edit from the
HOSTACCESS menu.
1= an active page and no backpages.
2 =an active page and 1 backpage.
3 = an active page and 2 back pages and so on.

id Control ID of the secondary window.

title Title.

Example of how to create a secondary window.

To create a secondary window at (3,3), holding a terminal window of size 40x10, use the following AiF escape sequence:
ESC_29 ; 1 ; 3 ; 3 ; 10 ; 40 w Help ; Hello ESC\

The Windows window will be made exactly the right size to hold the terminal window inside it.

The ID is ¢Help¢; the title will be ¢Hello¢
This will produce the following display on your terminal window:

Destroying a Secondary Window

To destroy secondary windows, use the following AiF escape sequence:
ESC_29 ; 2 w id ESC\

Where id is the window ID.

Activating a Secondary Window

To activate secondary windows, use the following AiF escape sequence. This will bring the active window to the front.
ESC_29 ; 3 w id ESC\

Where id is the window ID.

Setting Focus for Output in a Secondary Window

To set the focus for host output to a secondary window, use the following AiF escape sequence. This sequence is useful for
controlling host output to different windows as the user may change the focus of the secondary window manually by clicking on the
active window.

ESC_29 ; 3 ; 1 w id ESC\

Hiding/Showing a Secondary Window

To hide or show a secondary window, use the following AiF escape sequence:
ESC_33 ; 2 ; show w id ESC\

Where:

show 1 = hidden.
2 = minimized.
3* = normal.
4 = maximized .

id Toolbox/window ID.

Buttons

The following topics describe how to use AiF escape sequences to create and use:

Text push button.
Image push button.
Images (treated as static buttons).
Radio buttons.
Check boxes.

When using these escape sequences, you can describe button images for a button in great detail.

Click here for further details.

Creating A Text Button

To create a pushbutton holding a text label, use the following AiF escape sequence:
ESC_30 ; y ; x ; h ; wid {; visible} {; enabled} {; font} w control-id ; label ESC\

Where:
y y co-ordinate of top of button.
x x co-ordinate of left of button.
h Height of control, in character cell units.
wid Width of control, in character cell units.
visible 1 = create hidden.

2* = create visible.
enabled 1 = initially disabled.

2* = initially enabled.
font Selects button label font:

1* =Terminal.
2 = System.
3 = 10pt Helvetica.
4 = 8pt Helvetica.
Styles 3 and 4 map on to the Helvetica fonts used in
Borland-style bitmap pushbuttons and in dialog static text
used by the application.

control-id Control ID - must be unique, and may not be “root”.
label Button label.

Creating An Image Button

To create a push button holding a bitmap image and (optionally) a text label, use the following AiF escape sequence:
ESC_31 ; y ; x ; h ; wid {; visible} {; enabled} {; font} w control-id ; spec ESC\

Where:
y y co-ordinate of top of button.
x x co-ordinate of left of button.
h Height of button, in rows.
wid Width of button, in columns.
visible 1 = create hidden, 2 = create visible(*).
enabled 1 = initially disabled, 2 = initially enabled(*).
font Selects button label font:

1* = Terminal.
2 = System.
3 = 10pt Helvetica.
4 = 8pt Helvetica.
Styles 3 and 4 map on to the Helvetica fonts used in
Borland-style bitmap pushbuttons and in dialog static text
used by the application.

control-id Control ID.
spec Click here for details.

Image Specification

This powerful feature allows you to create pushbuttons holding:

· Bitmap images (.BMP files).

· Icon images (.ICO files).

· Bitmaps or icons in resource files (.DLL or .EXE files).

Example

To create a push button called help, displayed at (10,10), with height 5 and width 10, using the bitmap image held in the file c:\
pictures\question.bmp, use the following AiF escape sequence:

ESC_31 ; 10 ; 10 ; 5 ; 10 w help ; file=c:\pictures\question.bmp ESC\

Click here for further details.

Displaying an Image

To display an image on the screen, you can create a disabled push button, with an image defined using an image specification
string. This allows a simple way of displaying icons or bitmap images.

To display an image, use the following AiF escape sequence:
ESC_32 ; y ; x ; h ; wid {; visible} w control-id ; spec ESC\

Where:
y y co-ordinate of top of button.
x x co-ordinate of left of button.
h Height of control, in character cell units.
wid Width of control, in character cell units.
visible 1 = create hidden.

2* = create visible.
control-id Control ID.
spec Click here for details.

Note: the label font is set to the terminal font. This does not usually matter since disabled buttons normally just hold an image.

Example

To display an image called asterisk, displayed at (10,10), with height 5 and width 10, using the bitmap image held in the file
star.bmp, use the following AiF escape sequence:

ESC_32 ; 10 ; 10 ; 5 ; 10 w asterisk ; file=star ESC\

Creating a Check box

To create a check box, use the following AiF escape sequence:
ESC_34 ; y ; x ; h ; wid {; visible} {; enabled} {; font} {; left} {; check} w control-id ; label ESC\

Where:
y Y co-ordinate of top of check box.
x X co-ordinate of left of check box.
h Height of check box, in rows.
wid Width of check box, in columns.
visible 1 = create hidden.

2* = create visible.
enabled 1 = initially disabled.

2* = initially enabled.
font Selects font:

1* = Terminal.
2 = System.
3 = 10pt Helvetica.
4 = 8pt Helvetica.

left 1 = text on left.
2* = text on right.

check 1* = initially unchecked.
2 = initially checked.

control-id Control ID - must be unique, and may not be “root”.
label Text label.

The event reporting mask is initially set to all bits clear.

Creating a Radio Button

To create a radio button, use the following AiF escape sequence:
ESC_35 ; y ; x ; h ; wid {; vis} {; en} {; font} {; left} {; check} w r-id {; label} {; g-id} ESC\

Where:
y Y co-ordinate of top of radio button.
x X co-ordinate of left of radio button.
h Height of radio button, in rows.
wid Width of radio button, in columns.
vis 1 = create hidden.

2* = create visible.
en 1 = initially disabled.

2* = initially enabled.
font Selects font:

1* = Terminal.
2 = System.
3 = 10pt Helvetica.
4 = 8pt Helvetica.

left 1 = text on left, 2* = text on right.
check 1* = initially unchecked, 2 = initially checked.
r-id Radio button control ID - must be unique, and may not be

“root”.
label Text label for button - optional.
g-id control group ID, if relevant - optional.

The event reporting mask is initially set to all bits clear.

Using Radio Buttons in Groups

If you give a control group ID, the button control is automatically added to that group. The group is created if it does not exist.

When the first radio button control is added to a radio button group, it is forced to be checked, even if the host has not asked for it.
When subsequent radio buttons are added to a radio button group, if an initially checked button is added, the check is removed from
the previously checked button in the group.

These rules ensure that exactly one radio button in a group will be initially checked. It also means that when creating the controls, if
they are created as visible, and the initially checked button is not going to be the first, the user will momentarily see the check on the
first button. To avoid this, create radio buttons initially hidden, and then show them all at once.

Example: Using Buttons

The following example displays the following on your terminal window:

· A 3x8 push button called text, at (12,1), labeled "Label".

· A 3x8 image button called help, at (12,10), using the image held in the file c:\bitmaps\f1help.bmp.

· A 8x16 image called logo, at (1,10), using the image c:\bitmaps\easyacc.bmp.

· Three check boxes: check1, check2 and check3.

· Two radio button: radio1 and radio2.

using the following AiF escape sequences:
ESC_30 ; 12 ; 1 ; 3 ; 8 w text ; Label ESC\
ESC_31 ; 12 ; 10 ; 3 ; 8 w help ; file=c:\bitmaps\f1help.bmp ESC\
ESC_32 ; 1 ; 10 ; 8 ; 16 w logo ; file=c:\bitmaps\easy-acc.bmp ESC\
ESC_34 ; 10 ; 20 ; 2 ; 10 ;;;;; 2 w check1 ; Check 1 ESC\
ESC_34 ; 12 ; 20 ; 2 ; 10 ;;;;; 2 w check2 ; Check 2 ESC\
ESC_34 ; 14 ; 20 ; 2 ; 10 w check3 ; Check 3 ESC\
ESC_35 ; 10 ; 33 ; 2 ; 10 w radio1 ; Radio 1 ESC\
ESC_35 ; 12 ; 33 ; 2 ; 10 ;;;;; 2 w radio2 ; Radio 2 ESC\

Click here to see what your terminal window display will look like.

Easy Access Screen

Reading a Button

You can read when check boxes or radio buttons have been checked, as described in the following sections.

In all cases, a value will be sent to the host. This is formatted as:
<STX><value> <CR>

If an error is detected in the arguments, the value returned is a single question mark (STX ? CR).

Reading a Button¢s Check State

To read the check state of a button, use the following AiF escape sequence:
ESC_36 ; 1 w control-id ESC\

Where:

control-id Is the ID of the button.

All buttons have a check state, but it is only meaningful to read the state of check boxes and radio buttons.

Reading Which Button is Checked

To read the ID of a radio button in the group that is currently checked, use the following AiF escape sequence:
ESC_36 ; 2 w control-id ESC\

Where:

control-id Is the ID of the button group.

Setting/Clearing a Button

To set or clear a given radio button or check box, use the following AiF escape sequence:
ESC_37 ; 1 ; change w control-id ESC\

Where:

change 1 = clear (uncheck) the radio button or check box.
2* = set (check) the radio button or check box.

control-id Is the ID of the button group.

When doing this to a radio button that is part of a radio button group, the button is always checked; and the previously checked
button in the group (there must be one) is always unchecked.

String Lists

String lists are used in conjunction with list boxes and combo boxes. String lists contain the entries used to populate these boxes.
String lists are created and managed quite separately to the list/combo boxes which use them.

You can therefore use a single string list in multiple boxes, and create and destroy boxes without destroying the underlying data.

The following topics are described:

Creating string lists.
Format of string lists.
Manipulating string lists.
Reading from a string list.
Reading string list size.
Reading selected display text.
Reading selected hidden text.
Setting special characters.

Creating String Lists

To create string lists, either download the strings from the host, or read them in from a PC file. The second form is better suited to
longer lists. Although there is no inbuilt limit to the number of items in such a list, they are not intended for very large lists, because:

· A list box control cannot contain more than 64k of text, for example, if the average string length is 90 bytes, a list box will not
hold more than approximately 700 items.

· String lists are held in memory at all times.

· The time required to create large lists will be unacceptable to users.

· The time required to populate list/combo boxes with large lists will be unacceptable to users.

The upper realistic limit is probably a few hundred items.

Format of String Lists

In its simplest form, a string list has an ID (a name), and an ordered sequence of strings. The order defines the default order in
which the strings are displayed in a list or combo box (although this can be changed when the boxes are actually created).

String lists may also store a second, hidden, string for each item. This string is not displayed to the user, but can be used by the host
application as an alternative way for list items to be specified in messages exchanged between HOSTACCESS and the host.

Click here to see examples.

Creating String Lists

To create, add entries to and remove entries from, string lists, use the following AiF escape sequence:
ESC_40 {; add} w string-id ; text ; entry1... ESC\

Where:
add 1* = add strings to string list.

2 = remove strings from string list.
string-id String list ID.
text The display text of the string list entry before which the

new strings are to be inserted. Ignored if removing
entries.

entry1 ... 1st and subsequent entries to be added/removed.
The entries in the list contain a ¢display¢ part, and optionally, a ¢hidden¢ part. If present, the hidden part is separated from the display
part by a comma (so you cannot have a comma in the display part). If the hidden part is not given, a default hidden value will be
automatically created if it is ever needed- this will be a string representation of the position of the entry in the string list (starting from
1; ¢1¢, ¢2¢, ¢3¢ etc.).

List entries to be added/removed are given directly or indirectly. When given directly, a string parameter specifies the list entry in the
format

<display-part> <, hidden-part>

If a string parameter starts with a ¢@¢ character, it is treated as an indirect entry. The ¢@¢ is stripped off, and the remainder treated
as a PC file name. The file contains a list of entries in the above format. It is possible to mix the direct and indirect forms in a single
escape sequence.

Note: the comma and ¢@¢ characters cannot normally be used in display strings because of their special significance in the above
formats. However they can be changed.

Click here for further information.

When adding strings, the second string parameter contains the display text of the existing string list entry before which the new
entries are to be inserted. If missing, the new entries are added to the end of the list.

When removing entries, the hidden parts of entries are ignored.

Example of a string list

Consider a host application that needs to get the user to select a personnel record from a database. Each record includes the
person¢s name. Each record has a record number. The host application wants to use a dropdownlist style combo box (one in which
the user cannot type an entry, but has to select from the list) to get the name. The host application is not really interested in the text
of the name, but the record number it relates to.

This is more suited to a string list with hidden strings. The ¢display¢ strings are the names of the people, the hidden strings are the
associated record numbers. The host creates such a string list, then associates it with a ¢dropdown combo¢ style box. The host also
specifies that it wants to use the hidden strings when exchanging information with HOSTACCESS about the selected list items.
HOSTACCESS will then send back the record number of the selected item, which the host application can use directly.

Create a list of people, with hidden strings (record numbers in some database). The bulk of the list is created from a PC file called
people.lst. To this are added 2 people given directly. The list will be called ¢people¢ and will eventually contain the following entries,
in the order given:

Display text Hidden text Source

D. Bailey 173 people.lst

M. Woolley 174 people.lst

G. Baker 190 people.lst

F. Carden 191 people.lst

A.Hedgecock 160 direct from host

P.Hall 143 direct from host

ESC_40 w people ;; @people.lst ; A.Hedgecock, 160 ; P.Hall, 143 ESC\

people.lst is a standard DOS file with <CR><LF> characters separating each line of text. The file name could also include the full
directory path, for example c:\windows\data\people.lst. By default, the path is your HOSTACCESS directory. In this example,
people.lst looks like this:

D.Bailey, 173

M.Woolley, 174

G.Baker, 190

F.Carden, 191

Example 2 - String lists

The host application has a screen on which one of the pieces of information the user has to enter is a city name. The host
application designer chooses to do this with a simple combo box, which has a list of common cities, but will also let the user type in
a city that¢s not on the list. All the host application wants to get from the user is the text of the city name.

This is best suited to the simple form of string list, without use of hidden strings. The host downloads the list of cities in a string list,
then creates a ¢simple combo¢ style box. When extracting the selected city, or the name the user entered, HOSTACCESS sends the
relevant text to the host.

AiF Escape Sequence

Create a list containing the following cities: Birmingham, Bristol, Coventry, Leeds, London, Manchester, and York, called ¢cities¢.
ESC_40 w cities ;; Birmingham ; Bristol ; Coventry ; Leeds ; London ; Manchester ; York ESC\

Reading From a String List

In all cases, a value will be returned to the host. This is formatted as:
<STX> value <CR>

If an error is detected in the arguments, the value returned is a single question mark (STX ? CR).

Reading String List Size

To return the number of items in a string list, use the following AiF escape sequence:
ESC_41 ; 1 w control-id ESC\

Reading Selected Display Text

To return the display text for the selected list item, use the following AiF escape sequence:
ESC_41 ; 2 ; item w control-id ESC\

Where item is the number of the relevant item (starting from 1).

Reading Selected Hidden Text

To return the hidden text for the selected list item, use the following AiF escape sequence:
ESC_41 ; 3 ; item w control-id ESC\

Where item is the number of the relevant item (starting from 1).

Clearing a String List

To delete all entries in a string list, use the following AiF escape sequence:
ESC_42 ; 1 w control-id ESC\

Where control-id is the control ID for the string list.

Setting Special Characters

To set hidden text separator and indirect entry characters, use the following AiF escape sequence:

ESC_42 ; 2 w control-id ; string ESC\

Where string is a 2-character string holding these characters in order.

For example, to set the default special characters (, @) in the string list named string1, use the following AiF escape sequence:

ESC_42 ; 2 w string1 ; ,@ ESC\

Combo Boxes

The following topics describe how to create, read and manipulate combo boxes.

Creating a combo box.
Reading combo boxes.
Reading if a combo is visible.
Reading changes to combo boxes.
Reading the contents of a box.
Reading selected characters.
Manipulating combo boxes.
Hiding/showing combo boxes.
Using the clipboard (combo box styles).

Creating a Combo Box

To create a combo box, use the following AiF escape sequence:
ESC_45 ; y ; x ; h ; wid {; vis} {; en} {; font} {; box} {; sort} {; bar} {; msg} {; auto} {; border} w c-id {; str-id} {; sel} ESC\

Where:
y Y co-ordinate of top of box.
x X co-ordinate of left of box.
h Height of box, in rows.
wid Width of box, in columns.
vis 1 = create hidden, 2* = create visible(*).
en 1 = initially disabled, 2* = initially enabled.
font Text font:

1* = Terminal.
2 = System.
3 = 10pt Helvetica.
4 = 8pt Helvetica.

box 2 = simple combo box.
3 =dropdown combo box.
4 =dropdown list combo box.
5 = simple combo box borderless.
6 =dropdown combo box, borderless.
7 = dropdownlist combo box, borderless.

sort 1 = unsorted. The list items appear in the same order as in the
string list.
2* = sorted. The list items will appear in alphabetical order.

bar 1 = no scroll bar, even if items too wide for box, 2* = use scroll
bar, if needed

msg 1*= messages sent between host and HOSTACCESS will use
display text.
2 = messages sent between host and HOSTACCESS will use
hidden text.
msg selects whether the host wishes to use the display text or
hidden text of string list entries when communicating with
HOSTACCESS and affects messages sent in both directions.
Str-id and sel will be interpreted as display or hidden text
depending on this value. It also affects subsequent event
reporting (selection change and double click events), and the
way items are specified and transmitted in other escape
sequences.

auto 1 = no automatic horizontal scroll in edit box of combo box
.2* = automatic horizontal scroll in edit box of combo box.

border 1 = no border. The control uses the full depth of the control¢s
rectangle, probably displaying a partial item at the bottom.
2* = normal border, only show integral no. of items.

c-id Control ID of combo box.
str-id String list ID, optional. If not given, list will initially be empty.
sel Display/hidden text of item to be initially selected - optional. If

not given, the first displayed entry in the list/combo box will be
initially selected.

Click here for an example.

Combo boxes example

This example creates a string list with control ID str-list. It then creates:

· A 5x10 simple combo box (combo1) at (10,10).

· A 7x12 dropdown combo box (combo2) at (10,25).

· Aa 5x10 dropdownlist combo box (combo3) at (10,40).

All the boxes use str-list for their contents. Note that combo1 has changed background colour. Click here for further details.

ESC_40 w str-list ;; line 1 ; line 2 ; line 3 ; line 4 ; line 5 ESC\
ESC_45 ; 10 ; 10 ; 5 ; 10 ;;;; 2 w combo1 ; str-list ESC\
ESC_14 ; 1 ; 8 w combo1 ESC\
ESC_45 ; 10 ; 25 ; 7 ; 12 ;;;; 3 w combo2 ; str-list ESC\
ESC_45 ; 10 ; 40 ; 5 ; 10 ;;;; 4 w combo3 ; str-list ESC\

Line example

Reading Combo Boxes

You can read from a combo box, using the escape sequence described in the following sections to return a value to the host.

In all cases, a value will be sent to the host. This is formatted as:
<STX><value> <CR>

If an error is detected in the arguments, the value returned is a single question mark (STX ? CR).

Reading the Current Item in a Combo Box

To return the contents of the currently selected item, use the following AiF escape sequence:
ESC_46 ; 1 w control-id ESC\

The contents consists of either the display or hidden text for the selected item, depending on the value of the msg parameter when
the combo box was created. Click here to find out more.

If hidden text is returned, but was not defined for the selected entry, the position of the item in the string list is returned.This may not
be the position of the selected item as displayed. If the box was created with alphabetic sorting turned on, the order of presentation
in the combo box is quite separate from the order in the string list. The value that is returned will always be the order in the string
list.

If no item is selected, the value returned is a single question mark (STX ? CR).

Reading if a Combo is Visible

To return whether or not the list portion of a combo box is ¢dropped down¢ (i.e. visible), use the following AiF escape sequence:
ESC_46 ; 3 w control-id ESC\

The value returned is 1 if it is not visible, 2 if it is.

Reading Changes to Combo Boxes

To read if the contents of the box have been changed by the user, use the following AiF escape sequence:
ESC_46 ; 4 w control-id ESC\

The value returned is 1 if unchanged, 2 if changed.

This applies to simple or dropdown combo box styles only (not dropdown list).

Reading the Contents of a Box

To read the contents of a box, use the following AiF escape sequence:
ESC_46 ; 5 {; length} w control-id ESC\

where

length The maximum length that is to be returned. (*=80)

This applies to simple or dropdown combo box styles only (not dropdown list).

The contents of the box are returned.

Reading Selected Characters

To return edit box selection indication (telling the host which characters are selected), use the following AiF escape sequence:
ESC_46 ; 6 w control-id ESC\

The value returned is two comma-separated integers n,w, where

n The number of the first character in the selection (starting from 1).

w The number of selected characters.

If nothing is selected, the return value is ¢1,0¢.

This applies to simple or dropdown combo box styles only (not dropdown list).

Manipulating Combo Boxes

The following topics are described:

Setting the current item in a combo box.
Changing the string list to be displayed in a box.
Limiting text in combo boxes.
Setting the edit box selection range.

Setting the Current Item in a Combo Box

To set an item to be selected, use the following AiF escape sequence:
ESC_47 ; 1 w control-id ; item ESC\

Where:

item Display/hidden text of the required items.

The items are specified as display/hidden text of the required items, depending on the value passed in the msg parameter when the
combo box was created.

Click here to find out more.

Changing the String List to be Displayed in a Box

To change the string list that is to be displayed in the box, use the following AiF escape sequence:
ESC_47 ; 2 w control-id ; string-id ESC\

Where string-id is the (optional) string list ID. If omitted, the box becomes empty.

Limiting Text in Combo Boxes

To limit the amount of text that may be entered, for simple or dropdown combo box styles only, use the following AiF escape
sequence:

ESC_47 ; 3 ; limit w control-id ESC\

Where limit is the limit.

Setting the Edit Box Selection Range

To set the edit box selection range, for simple or dropdown combo box styles only, use the following AiF escape sequence:
ESC_47 ; 4 ; start ; length w control-id ESC\

Where:

start The position (starting from 1) of the first character to be
selected.

length The number of characters that are to be selected.

Hiding and Showing Combo Boxes

To drop-down (show) or close up (hide) the list box part of the combo box, for simple or dropdown combo box styles only, use the
following AiF escape sequence:

ESC_47 ; 5 {; show} w control-id ESC\

Where:

show 1 = hide.
2* = show.

Using the Clipboard (combo box styles)

For simple or dropdown combo box styles only, you can use the clipboard facilities as follows:

To cut the selection in the box to the clipboard, use the following AiF escape sequence:
ESC_47 ; 6 w control-id ESC\

To copy the selection in the box to the clipboard, use the following AiF escape sequence:
ESC_47 ; 7 w control-id ESC\

To paste the clipboard contents into the box at the current insertion point, use the following AiF escape sequence:
ESC_47 ; 8 w control-id ESC\

This is ignored if the clipboard does not contain text.

To clear the current selection in the box (deleting it without placing it in the clipboard.), use the following AiF escape sequence:
ESC_47 ; 9 w control-id ESC\

List Boxes

The following topics describe how to create both ordinary and incremental list boxes, how to read from and manipulate a list box.

Creating list boxes.
Incremental list boxes.
Reading from a list box.
Manipulating a list box.

Creating list boxes

To create a list box, use the following AiF escape sequence:
ESC_45 ; y ; x ; h ; wid {; vis} {; en} {; font} {; box} {; sort} {; bar} {; msg} {; auto} {; border} {; size} {; style} w id {; str-id}
{; sel} {; top} ESC\

Where:
y Y co-ordinate of top of box.
x X co-ordinate of left of box.
h Height of box, in rows.
wid Width of box, in columns.
vis 1 = create hidden, 2* = create visible.
en 1 = initially disabled, 2* = initially enabled.
font Text font: 1* = terminal, 2 = system, 3 = 10pt Helvetica, 4

= 8pt Helvetica
box 1* = list box, possibly incremental.

Click here for for details).
8 = tabular list box. This is a list box supporting tab
characters, allowing you to input data in columns:
Click here for for details).

sort 1 = unsorted. The list items appear in the same order as
in the string list.
2* = sorted. The list items will appear in alphabetical
order.

bar 1 = no horizontal scroll bar, even if items too wide for box.
2* = use horizontal scroll bar, if items too wide for box.

msg 1* = messages sent between host and HOSTACCESS will
use display text.
2 = messages sent between host and HOSTACCESS will
use hidden text.
msg selects whether the host wishes to use display or
hidden text.

auto 1 = no auto horizontal scroll in edit box of combo box.
2* = auto horizontal scroll in edit box of combo box.

Border 1 = no border, list will try to use whole of control rectangle.
2* = normal border, only show integral no. of items.
3 = 3D Sculpted list type.

size Sets the number of elements the list box will hold. For use
with incremental list boxes. This must be at least one more
than the number of elements.

style 0 = * standard incremental. Registers an event if a user
pages off the bottom of the list box.

1 = extended incremental style. Registers events if the
following occurs:

1: paging off the bottom of the list box.
-1: Paging off the top of the list box.

id Control ID of list box.
str-id String list ID, optional. If not given, list will initially be

empty.
sel Display/hidden text of item to be initially selected -

optional. If not given, the first displayed entry in the
list/combo box will be initially selected.

top Display/hidden text of item to be initially shown at the top
of the box - optional. By default, the initially selected item
is placed top most if possible.

Incremental List Boxes

You can use this feature to create list boxes with room for many entries, and create a corresponding string list with only a few
strings.

This feature is useful if data transmission is slow, allowing you to update the list box incrementally as the user scrolls downwards.

You can get HOSTACCESS to send notification messages to the host, whenever the user scrolls off the bottom of the visible strings,

and so reveal an undefined entry. To do this, you need to enable event number 13.

This notification takes the format:
 <STX>13,<element number>,<number of elements><CR>.

If the host defines a string list which is larger than the total elements set then the total elements becomes the number of strings in
the string list.

When the notification is received, the host should respond by adding the required string to the end of the string list associated with
the list box.

Click here for a description of enabling event numbers.

Click here for a description of adding a string to a string list.

Note: sorting is automatically disabled for incremental list boxes.

Example: Incremental List Boxes

The host creates a list box with 100 entries, containing the entries in a string list named Fill-up, which contains only 10 strings.

The list box will display the 10 given strings and the remaining 90 will be empty.

The user may scroll down to reveal element 11 which is not available. HOSTACCESS then sends
<STX>13,11,1<CR>

to the host. The host will then respond by adding a string (say, “Line 11”) to the end of the string list (after “Line 10”)associated with
the list box, using the following AiF sequence:

ESC_40 w fill-up ; Line 10 ; Line 11 ESC\

The text “Line 11” will then be displayed in the list box.

Example 2: Incremental List Box

The following example creates a string list named str-list, containing the data described, then creates a simple list box, and a
tabular list box, then sets the tab stops. The “” symbol is used here to denote a tab character.

ESC_40 ; 1w str-list ;; 012345678901234567890123456789012345 ; NameDept.Ext. ; EddyStabiloGraphics20 ;
DavidBaileyDevelopment29 ; CynthiaKadogoLegal42 ; JohnMerrellsDevelopment40 ; StoremanNormanStores45 ESC\
ESC_45 ; 1 ; 1 ; 4 ; 20 ;;; 3 ; 1 w listbox1 ; str-list ESC\
ESC_45 ; 10 ; 1 ; 7 ; 40 ;;;; 8 ; 1w listbox2 ; str-list ESC\
ESC_47 ; 11 ; 10 ; 20 ; 32 ; 40 ; 50 w listbox2 ESC\
ESC_14 ; 16 ; 4 w listbox2 ESC\

Click here for the display given from this example.

Listbox diagram

Note that the first box has a different font (8 point Helvetica) and background colour.

Reading from a List Box

You can read from a list box, using the AiF escape sequence described in the following sections to return a value to the host. This
return value is formatted as:

<STX><value> <CR>

If an error is detected in the arguments, the value returned is a single question mark (STX ? CR).

Reading the Current Item

To return the display or hidden text of the currently selected item, use the following AiF escape sequence:
ESC_46 ; 1 w control-id ESC\

The text returned depends on the value passed in the msg parameter when the list box was created.

Click here for details.

If no hidden text was specified for the selected entry, the position of the item in the string list is returned.

Note: this may not be the position of the selected item as displayed. If the box was created with alphabetic sorting turned on, the
order of presentation in the list box is quite separate from the order in the string list. The value that is returned will always be the
order in the string list.

If no item is selected, ¢?¢ is returned.

Reading the Top Item

To return the display or hidden text of the top visible item, use the following AiF escape sequence:
ESC_46 ; 2 w control-id ESC\

Reading Total Size

To return the total number of elements defined, use the following AiF escape sequence:
ESC_46 ; 7 w control-id ESC\

Manipulating a List Box

The following topics are described:

Setting the current item.
Changing the string list to be displayed.
Converting to Incremental Style.

Setting the Current Item

To set an item to be selected, and optionally also to be the topmost visible item, use the following AiF escape sequence:
ESC_47 ; 1 w control-id ; item ESC\

Where:

item Display/hidden text of the required items.

The items are specified as display/hidden text of the required items, depending on the value passed in the msg parameter when the
list box was created

Click here for details.

Changing the String List to be Displayed

To change the string list that is to be displayed in the box, use the following AiF escape sequence:
ESC_47 ; 2 w control-id ; string-id ESC\

Where string-id is the (optional) string list ID. If omitted, the box becomes empty.

Converting to Incremental Style

To convert a non-incremental style list box into an incremental style list box, and set the total number of elements, use the following
AiF escape sequence:

ESC_47 ; 10 {; elements} w control-id ESC\

Where:

elements The total number of elements in the box.

If the list box is already of incremental style then the total number of elements will be set to the new value. The total number of
elements is always greater than or equal to the number of strings in the associated string list. This will fail if the list box is sorted.

Setting Tabs

 If you have created a tabular list box, you can set one or more tab stops for that box. To set tab stops, use the following AiF escape
sequence:

ESC_47 ; 11 ; width1... w control-id ESC\

Where:
width1 ... Width of tab stops (in characters). To set all the tap stops

to be the same width send only one value. To set a list of
tab stops send a tab position value for each tab stop.

control-id Control ID of the tabular list box.
By default the tab stops are set to be half a system character width. The values must be sorted in increasing order. Back-tabs are
not supported.

Edit Boxes

The following topics describe how to create, read and manipulate an edit box.

 Creating an edit box.
 Reading from an edit box.
 Manipulating an edit box.

Validated edit boxes (single line edit boxes).

Creating an Edit Box

To create an edit box, use the following AiF escape sequence:
ESC_50 ; y ; x ; h ; wid {; vis} {; en} {; font} {; display} {; auto} {; acc} {; focus} {; edit}
{; border} {; scroll} ins/ovr w control-id {; contents} ESC\

Where:
y Y co-ordinate of top of box.
x X co-ordinate of left of box.
h Height of box, in rows.
wid Width of box, in columns.
vis 1 = create hidden, 2* = create visible.
en 1 = initially disabled, 2* = initially enabled.
font Selects font: 1* = terminal, 2 = system, 3 = 10pt

Helvetica, 4 = 8pt Helvetica.
display 1* = display contents normally.

2 = force contents to upper case.
3 = force contents to lower case.
4 = ¢password¢ - contents displayed as asterisks.
(The password character may be switched from asterisk
to something else).

auto 1 = do not automatically (horizontally) scroll the box.
2* = automatically (horizontally) scroll the box.

acc 1* = read/write access.
2 = read only access - user cannot change contents.

focus 1* = initially, contents not selected when box receives
focus.
2 = initially, contents selected when box receives focus.

edit 1 = single line edit(* if height is 1)
2 = multi-line edit(* if height > 1)
3 = multi-line edit with auto vertical scrolling

border 1 = no border. The edit box height is exactly the multiple
of character cells given.
2* = border. The box extends 4 pixels above and below
the normal box rectangle This means that you cannot
have two consecutive edit boxes on two consecutive
lines.
3= 3D border.

ins/ovr 1= disable.
2= ins/ovr enabled.

scroll 1* = no scroll bars.
2 = horizontal scroll bar.
3 = vertical scroll bar.
4 = horizontal & vertical scroll bars.

control-id Control ID.
contents Initial contents of box - optional.

The height of the box that you pass relates to the height in character cells of the control, and not to the number of lines of text the
control will hold.

Creating an edit box example

This example creates a 3x10 edit box at (12,10), ID edit, with a test string and scroll bar.

ESC_50 ; 12 ; 10 ; 3 ; 10 ;;;;;;;;;; 2 w edit ; Test text ESC\

Click here to view this example.

Edit box example

Reading From an Edit Box

To read a value from an edit box, use the AiF escape sequences as described in the following sections.

In all cases, a value will be sent to the host. This return value is formatted as:
<STX><value> <CR>

If an error is detected in the arguments, the value returned is a single question mark (STX ? CR).

Reading a Line in an Edit Box

To read the contents of a given line in the box, use the following AiF escape sequence:
ESC_51 ; 1; max-len ; line w control-id ESC\

Where:

max-len Is the maximum length of the text returned. (*=80).

Remember to set max-len when reading a multiline control,
since their contents will often exceed 80 characters.

line Is the number (starting from 1) of the line you want. (*=all lines).

For single line edits, line is ignored, and the whole contents of
the single line are returned, followed by CR.

For multi line edits, If line is given (and is greater than zero),
then the contents of the specified line, only, are returned in the
same format as for a single line edit.

If line is not given (or is given as 0), all lines in the edit box will
be returned. Each line will be separated from the next by CR.
Preceding the lines is the line count, itself following by CR.

For example, if a multi-line edit contains 2 lines ¢hello¢ and
¢there¢, the reply would look like this:

2;hello<cr>there<cr>

For example, to return the contents of line 3 of edit box ¢ed¢, use:
ESC _ 51 ; 1 ;; 3 w ed ESC\

80 characters at most will be returned.

Examining Details of Lines

To read the number of lines in a box (always 1 for single line edit), use the following AiF escape sequence:
ESC_51 ; 2 ; w control-id ESC\

To read the current length of a given line, use the following AiF escape sequence:
ESC_51 ; 3 ; line w control-id ESC\

Where:

line The relevant line number (*=1).

To read the line number of the first visible line in the box (for multi-line edits only), use the following AiF escape sequence:
ESC_51 ; 4 ; w control-id ESC\

Detecting Changes in an Edit Box

To return a flag that says if the edit box contents have been changed by the user.
ESC_51 ; 5 w control-id ESC\

The value returned is ¢1¢ if no change, or ¢2¢ if changed.

Telling the Host Which Characters are Selected

To return a selection indication - telling the host which characters are selected (for single line edits), use the following AiF escape
sequence:

ESC_51 ; 6 ; line w control-id ESC\

The value returned is two comma-separated integers n,w, where:

n The number of the first character in the selection (starting
from1).

w The number of selected characters.

If nothing is selected, the return value is ¢1,0¢.

Manipulating an Edit Box

To manipulate an edit box, use the following AiF escape sequence features.

There is no reply to this escape sequence.

Setting contents in an edit box.
Limiting text entered.
Scrolling.
Changing ‘Password’ Character.
Setting Selection Range.
Using the Clipboard.
Initializing a Multi-line Edit Box.

Setting Contents in an Edit Box

To set the contents of an edit box, use the following AiF escape sequence:
ESC_52 ; 1 w control-id ; contents ESC\

Where:

contents The new contents of the edit box.

Limiting Text Entered

To limit the amount of text that may be entered into the box, use the following AiF escape sequence:
ESC_52 ; 2 ; limit w control-id ESC\

Where:

limit The maximum number of characters. This is a total limit, not
just the limit on a single line (multi-line edit box users take note),

Scrolling

To scroll an edit box so that that the given line number is the first visible line (for multi line edits only), use the following AiF escape
sequence:

ESC_52 ; 3; line w control-id ESC\

Where:

 line The relevant line number.

Changing “Password” Character

To change the “password” character, use the following AiF escape sequence:
ESC_52 ; 4; w control-id ; char ESC\

Where:

char The password character.

Setting Selection Range

To set the selection range (for single line edit boxes only), use the following AiF escape sequence:
ESC_52 ; 5; start ; len w control-id ESC\

Where:

start The location (starting from 1) of the first character to be
selected.

len The number of characters that are to be selected

Using the Clipboard

You can use the clipboard facilities as follows:

To cut the selection in the edit box to the clipboard, use the following AiF escape sequence:
ESC_52 ; 6 w control-id ESC\

To copy the selection in the edit box to the clipboard, use the following AiF escape sequence:
ESC_52 ; 7 w control-id ESC\

To paste the clipboard contents into the edit box at the current insertion point, use the following AiF escape sequence:
ESC_52 ; 8 w control-id ESC\

This is ignored if the clipboard does not contain text.

To clear the current selection in the edit box (i.e., deletes it without placing it in the clipboard.), use the following AiF escape
sequence:

ESC_52 ; 9 w control-id ESC\

Initializing a Multi-line Edit Box

To initialize a multi-line edit box with the contents of the named string list, use the following AiF escape sequence:
ESC_52 ; 10 w control-id; string ESC\

Where:

string The string list ID.

Validated Edit Boxes

Validated edit boxes are single-line edit boxes that may only contain information of a specific type, and are validated so that they
only contain information of that specific type:

· An integer.

· A date.

· An amount of money.

Once you have defined the type of information that the edit box contains, the contents of the edit box must always conform to the
format you have specified. The contents can only be changed to valid formats.

For example, if you create a validated edit box for an integer, then that box only accepts valid integers as input. All other inputs will
be ignored (sounding a beep).

Creating Validated Edit Boxes

To create a validated edit box, you need to:

Create a normal edit box, defining its size to be consistent with the data it contain. For example, if you want a validated edit box to
contain an integer between 100 and 999, you should create the edit box to be 1 character high and 3 characters wide.

Attach a validation to it, defining the allowed contents of that edit box. You can attach integer validations, date validations or
currency validations, depending on the type of data required. These validations are described in the following sections.

Validated edit boxes only allow single inputs, on single lines: one date, one number, or one sum of money. If you create a multi-line
edit box, then attach a validation to it, the edit box will only allow inputs on the top line. If the initial contents of the edit box do not
conform to this format, they are removed. If you destroy an edit box, the associated validation is also destroyed.You can change the
validated edit box by attaching a new validation.

Integer Validations

To attach an integer validation to an edit box (defining that box to contain only integers), use the following AiF escape sequence:
ESC_70 ; 1 {; low ; high} w control-id ESC\

Where:
low Minimum allowed value for integers.
high Maximum allowed value for integers. Must be higher than

low.
control-id Control ID of edit box.

Note: if you specify a low parameter, you must also specify a high parameter.

If low and high are both zero, or are not specified, then there are no limits to the integer.

Example

To create an edit box called emp-nos, use the following AiF escape sequence:
ESC_50 ; 10 ; 10 ; 1 ; 2 w emp-nos ; 17 ESC\

To then attach a validation to that box, such that the box only contains valid integers between the values of 1 and 32, use the
following AiF escape sequence:

ESC_70 ; 1 ; 1 ; 32 w emp-nos ESC\

Date Validations

To attach a date validation to an edit box, use the following AiF escape sequence:
ESC_70 ; 2 {; format} w control-id ESC\

Where:
format The format of the date information:

1 = long date format (for example, Monday, 20 June, 1996).

2 = short date format (for example, 20/06/95).
3* = Abbreviated date (for example, 20/06 - defaults to current
year).

control-id Control ID of edit box.
The format for dates is defined by Windows. To change this, run the International program within Windows Control Panel.

The host always stores dates in the following format:
dd/mm/yyyy

irrespective of the user¢s national settings. This increases simplicity over national borders.

Special Date Strings

When displaying date information, you can pass a number of special strings that relate to the current date:
yesterday
today
tomorrow
next <monday/tuesday/wednesday/thursday/friday/saturday/sunday>
last <monday/tuesday/wednesday/thursday/friday/saturday/sunday>

These strings are not case-sensitive.

Changing the date

You can use the following keypresses to change the date within an edit box:

Up Arrow Add a day to the date.

Down
Arrow

Subtract a day from the date.

PageUp Add a month to the date.

PageDown Subtract a month from the date.

Home Set the date to today (the current date).

When altering the month, the day of month is adjusted within the bounds of the month. For example, adding a month to 31/01 gives
28/02.

Note: when within a date-validated edit box, you cannot use the PageUp and PageDown keys to scroll back/forward through the
current session¢s terminal backpages.

Edit Examples

To display an edit box called payday, containing the date for the next Friday from the current date, use the following AiF escape
sequence:

ESC_50 ; 5 ; 5 ; 3 ; 10 w payday ; next friday ESC\
To check that the date information in an edit box called date is valid, use the following AiF escape sequence:

ESC_70 ; 2 w date ESC\

Currency Validations

To attach a currency validation to an edit box, use the following AiF escape sequence:
ESC_70 ; 3 w control-id {; format} ESC\

Where:
control-id Control ID of edit box.
format The currency format - see Defining

Currency Format.
The default currency format is defined by Windows. To alter this, run the International program within Windows Control Panel.

Defining Currency Format

You can use the format parameter to define a currency format. This format consists of a series of special characters based on the
Visual Basic formatting commands, as follows:

Symbol Meaning

! Display currency symbol.

Display zero or more digits if before a
decimal point.
Display up to 1 digit if after the
decimal point.

0 Display one or more digits; or 0, for
leading and trailing zeros.

. Display a decimal point.

, Allow the triad separator between
triples of digits.

% Percentage display (number is
multiplied by 100, and suffixed with a
% sign). This cannot be used with the
! symbol.

- Force a “-” symbol before negative
numbers (the default).

+ Force a “+” symbols before positive
numbers.

() Enclose negative numbers in
parentheses.

“String” Allow literal string. This is collected
into one complete string, placed at the
end of the currency string. (for
example “Gross”, “per annum”).

Currency Examples

To format a currency displayed as a currency symbol, followed by zero or more digits, then a decimal point, then a trailing zero or
one digit, use the following string:

!#.0

So to attach a currency validation in this format, use the following AiF escape sequence:
ESC_70 ; 3 w edit ; !#.0 ESC/

The following table shows how particular sums can be represented:

Sum Format

!#.# (#.00) “ pounds”

1.2 1 £1.2 1.20 pounds

12.52 13 £12.5 12.52 pounds

-23.532 -24 -£23.5 (23.53) pounds

Note: blank edit boxes are always displayed as empty, despite any formatting to the contrary.

Static Labels

You use a static label as a means of getting proportional text on the screen.

To create a static label of a given size, use the following AiF escape sequence:
ESC_53 ; y ; x ; h ; wid {; vis} {; en} {; font} {; pos} {; bord}
w control-id {; text} {; face} ESC\

Where:
y Y co-ordinate of top of label.
x X co-ordinate of left of label.
h Height of label, in rows.
wid Width of label, in columns.
vis 1 = create hidden.

2* = create visible.
en 1 = initially disabled.

2* = initially enabled.
font Font: 1* = Terminal.

2 = System.
3 = 10pt Helvetica.
4 = 8pt Helvetica.
5 = Font face name (see face).

pos 1 = left aligned.2 = right aligned.
3* = centred.

bord 1* = no border.
2 = border.

control-id Control ID.
text Text to be displayed.
face Font face name (only if font = 5) e.g. “Times New Roman”.

Changing the Windows pointer

.It is now possible to change the Windows pointer (cursor) style via the AiF, although this will only apply to the terminal window. Any
GUI controls will over ride this style while the pointer is over the area.

Use the following AiF sequence:
ESC_56 ; arrow w ESC\

Where:

Arrow

0 Restore Standard Pointer.

1 Arrow.

2 Wait.

3 Cross.

4 I Beam.

5 Icon.

6 Up arrow.

10 Size.

11 Size NESW.

12 Size NS.

13 Size NWSE.

14 Size WE.

Creating a Modal Message Box

A modal message box is a dialog box with a multi-line message, a caption, optionally a bitmap to the left of the message, and one of
a variety of standard button combinations. To create a modal message box use:

ESC_91 ; style ; y ; x w caption ; message ; spec ; help ; context ESC\

Where:
style Button Style. The buttons set as default (i.e. those that

respond when the ENTER key is pressed) are marked with
an asterisk.

1: OK + cancel(*).
3: OK(*) + cancel.
5: yes + no + cancel(*).
7: yes(*) + no + cancel
9: yes + no(*) + cancel.
11*: OK.
13: yes(*) + no.
15: yes + no(*).

y Y co-ordinate of message box.
x X co-ordinate of message box.
caption Caption (title).
message Message itself. Separate each paragraph with a CR.
spec Decoration button spec. Click here for further

information.

Note: Previous options of this funtion are still supported but should be changed to reflect the revised options as above.

Positioning the Box

If x and y are present, and greater than zero, the message box is positioned so the top left of the box coincides with the screen pixel
coordinate of the top left pixel of the identified character cell in the terminal window. If this forces part of the message box off screen,
it is moved if possible to get the whole box on screen.

If either x or y are 0 or omitted, the message box will be centered on the terminal window.

Returning Values to the Host

The result is returned to the host as
 <STX> n <CR>

Where:

n 1 = ¢no¢.

2 = ¢yes¢ or ¢OK¢.

3 = ¢cancel¢, escape pressed, or msg box closed.

Returning Values to the Host Example

To create a Modal message box at 10,10, with a title, 1 line of text, and Yes/No/Cancel/Help buttons, use:
ESC_91 ; 6 ; 10 ; 10 w MBox Test ; Click any button - Cancel has focus ESC\

Click here to see an example.

MBOX example

Status Bar

You can use AiF sequences to modify the status bar for your application:

Hiding/showing the status line.
Displaying your own text messages.
Dividing the status line into panes, and setting the contents of each pane.

The following topics describe how to use these functions.

Hiding/Showing the Status Line

To hide/show the status line, use the following AiF escape sequence:
ESC_92 ; 3 ; show w ESC\

Where:

show 1 = hide status line.

2* = show status line.

Hiding the status line will increase the area available for the terminal window display.

Setting Status Line Text

To set the main text of the status line, use the following AiF escape sequence:
ESC_92 ; 1 ; timeout w text ESC\

Where:
timeout Number of seconds message is to remain on screen.

(*=no timeout - message remains until the next message
is sent).

text The text of the status line.
For example, to send the text “Press F1 for help” to the status line, use:

ESC_92 ; 1 w Press F1 for help ESC\

Setting Status Line Pane Contents

To set the contents of one or more panes, use the following AiF escape sequence:
ESC_92 ; 2 ; pane; contents ; w ESC\

Where:
pane Pane number (1, 2 or 3).
contents Pane contents:

1 = empty pane.
2 = num. lock status.
3 = caps lock status.
4 = time (hh:mm format).
5 = date (dd-mmmm-yy format).
6 = cursor position (row:column format).

To set multiple panes in one escape, repeat pairs of integer arguments.

Click here for an example.

Setting Status Line Pane Example

To set 3 panes as follows:

1 = cursor position.

2 = num lock status.

3 = empty.

Use the following AiF escape sequence:
ESC_92 ; 2 ; 1 ; 6 ; 2 ; 2 ; 3 ; 1 w ESC\

Commands for menus, toolboxes and toolbars

Commands are controls associated with menus, toolboxes or toolbars. Commands can be associated with text (for use in menus),
or with button images (for use in toolbars and toolboxes).You must create commands to put in toolbars, boxes and menus before
you create the toolbars, boxes and menus.

Once a command has been created, you make it visible to the user by adding it to a ¢command container¢ object, such as a toolbar,
and then make the toolbar visible.

Note: Commands in use in menus should not be used to load application menus as these will not work.

Creating commands.
Changing command type and state.
Reading a command.
Setting command images in toolbars/toolboxes.
Adding a new command group.

Creating Commands

To create or add a command definition, use the following AiF escape sequence:
ESC_33 ; 5 ; type {; help} w c-id {; menu} {; spec} {; stat} {; wfile} {; wcont} {; r-id} ESC\

Where:

type Command type (only relevant for toolboxes and toolbars) and
initial state:

1 = pushbutton-type command, disabled.

2 = pushbutton-type command, enabled.

3 = check box-type command, unchecked, disabled.

4 = check box-type command, unchecked, enabled.

5 = check box-type command, checked, disabled.

6 = check box-type command, checked, enabled.

7 = check box-type command, indeterminate, disabled.

8 = check box-type command, indeterminate, enabled.

Click here for an illustration.

help Winhelp command. Click here for details of invoking
Windows help.

c-id ID for new command.

menu Menu text. i.e., the text to be used when this command is
added to a menu.

spec Image specification when this command is used in a floating
toolbox or toolbar. The same image is used for toolboxes and
toolbars. The images for all button states (enabled, checked
etc.) is automatically computed.

Click here for details of how to specify an image.

stat Status line prompt. This text will be displayed in the status line
when the user ¢selects¢ the command (e.g., by holding down a
button in a toolbox).

wfile Winhelp filename - used when user requests help for this
command.

wcont Winhelp context. Click here for details.

r-id Radio command group ID

Changing Command Type and State

To change a command type and state, use the following AiF escape sequence:
ESC_33 ; 6 ; type w c-id ESC\

Where:

type New command type and state. Values are 1 - 8, as for creating
commands.

Click here for details.

c-id Command ID.

All toolboxes and toolbars that currently show the command are redrawn to reflect the new state.

Reading a Command

To read the current type and state for a given command, use the following AiF escape sequence:
ESC_33 ; 7 w c-id ESC\

Where:

c-id The command ID.

The format of the value returned is as follows:

<STX> state<CR>

Where:

state The current state (1..8).

Setting Command Images in Toolbars/Toolboxes

To explicitly set the images to be used to show commands in toolboxes and toolbars, use the following AiF escape sequence:
ESC_33 ; 8 w c-id ; norm ; dis ; check ; indet ; norm2 ; dis2 ; check2 ; indet2 ESC\

Where:
c-id Command ID.
norm Image spec for toolbar, ¢normal¢.
dis Image spec for toolbar, ¢disabled¢.
check Image spec for toolbar, ¢checked¢.
indet Image spec for toolbar, ¢indeterminate¢.
norm2 Image spec for toolbox, ¢normal¢.
dis2 Image spec for toolbox, ¢disabled¢.
check2 Image spec for toolbox, ¢checked¢.
indet2 Image spec for toolbox, ¢indeterminate¢.

This allows different images to be used for toolbars and toolboxes, and/or different images for the different command states.

This should be done before adding the command to a toolbox/toolbar. It should not be used to dynamically change the button once
visible.

Click here for an illustration of these states.

Adding a New Command Group

To add a new command group, use the following AiF escape sequence:
ESC_33 ; 9 w group-id ESC\

Where:

group-id The command group ID.

New Command Group Example

The following shows a toolbox containing eight buttons (commands), in all eight possible states.

All the commands use the same bitmap image. The toolbox does not have focus, and has a minimize box attached. The code is
implemented using the following sequences

ESC_33 ; 1 ; 10 ; 10 ;;; 2 w tbox ; Sample ; c:\windress\tiger.ico ESC\
ESC_33 ; 5 ; 1 w tcom1 ;; file=c:\bitmaps\tree.bmp ESC\
ESC_33 ; 5 ; 2 w tcom2 ;; file=c:\bitmaps\tree.bmp ESC\
(etc ...)
ESC_33 ; 4 w tbox ; tcom1 ESC\
ESC_33 ; 4 w tbox ; tcom2 ESC\
(etc ...)
ESC_33 ; 2 w tbox ESC\

Click here to see what this will look like.

Sample

Toolbars and Toolboxes

You can use AiF escape sequences to create and use floating toolbars and toolboxes. The following sections describe how to use
these functions.

Before creating a toolbox or toolbar, you must create commands to put in those toolboxes.

 Command details.
 Creating a floating toolbox.
 Hiding/showing a toolbox.
 Creating a toolbar.
 Adding a button to a toolbar/toolbox.

Creating a Floating Toolbox

To create a floating toolbox, use the following AiF escape sequence:
ESC_33 ; 1 ; x ; y {; mod} {; border} {; min} {; orig} w t-id {; title} {; icon} ESC\

Where:
x x co-ordinate of top of toolbox (see orig, below).
y y co-ordinate of left of toolbox (see orig, below).
mod 1 = modeless.

2* = modal.
border 1 = no border.

2* = thin border, not resizable.
min 1* = do not display a minimize box.

2 = display a minimize box.
orig Window origin:

1 = relative to the screen, in pixels.
2 = relative to the application window, in pixels.
3* = relative to the main terminal window, in character cells.

t-id Unique toolbox ID.
title Title text for toolbox.
icon Icon file name, to be used when toolbox is minimized. Must be

a .ico file.
If not given, a default icon will be used. Only relevant if a
minimize box is displayed.

Note: the toolbox will be hidden by default - you have to show it to display the toolbox on the screen. Click here for details of
showing a toolbox.

Hiding/Showing a Toolbox

To hide or show a toolbox, use the following AiF escape sequence:
ESC_33 ; 2 ; show w control-id ESC\

Where:

show 1 = hidden.

2 = minimized.

3* = normal.

4 = maximized.

control-id Toolbox control ID.

Creating a Toolbar

To create a toolbar, use the following AiF escape sequence:
ESC_33 ; 3 ; bar w control-id ESC\

Where:

bar 1* = toolbar initially empty.

2 = base toolbar on default HOSTACCESS toolbar.

control-id Toolbar control ID.

Adding a Button to a Toolbar/Toolbox

You must create the toolbar/toolbox before you can add a button. The button command must already exist before you create the
button. To add a button to a toolbox/toolbar, use the following AiF escape sequence:

ESC_33 ; 4 {; place} ; gap w t-id ; c-id ESC\

Where:

place Where to place new button: 1* = to right of last; 2 = start
new row of buttons.

gap Gap between new button and previous button. If adding to
same row, this is the number of pixels of gap inserted to
the left of the new button. When starting a new row, this is
the number of pixels of gap to insert above the new button.

t-id Toolbox/toolbar ID.

c-id Command ID (the ID of an existing command). May be an
internal command.

If the toolbox/toolbar is currently visible, it will be redrawn immediately.

You should add all commands to a toolbox/bar whilst it is hidden, and then show it at the end.

Toolbar Button Example

The following example:

· Creates a floating toolbox named tbox, with header text “Sample”.

· Creates two commands, tcom1 and tcom2, and links these commands with bitmap images.

· Adds both tcom1 and tcom2 to the floating toolbox tbox.

· Shows the floating toolbox.

This can be coded as follows:
ESC_33 ; 1 ; 10 ; 10 w tbox ; Sample ESC\
ESC_33 ; 5 ; 2 w tcom1 ;; file=c:\bitmaps\tree.bmp ESC\
ESC_33 ; 5 ; 2 w tcom2 ;; file=c:\bitmaps\question.bmpESC\
ESC_33 ; 4 w tbox ; tcom1 ESC\
ESC_33 ; 4 w tbox ; tcom2 ESC\
ESC_33 ; 2 w tbox ESC\

Click here to see how this is displayed.

Toolbar Button Picture

Menus

You can use AiF escape sequences to create controls for Windows-style menus on the menu bar for your application.

To use menus, you must first create a set of commands to place in the menus you create.

Creating menus.
Displaying menus.
Enabling/disabling menus.

Creating Menus

To create a new menu, use the following AiF escape sequence:
ESC_33 ; 10 ; dis w m-id ; title ; c-id1 ... ESC\

Where:

dis 1 = disabled.

2* = enabled.

m-id New menu ID.

title Menu title.

c-id1 ... Command IDs, or menu IDs to be added to the menu. To add
a separator, skip a command ID (i.e., 2 semicolons with
nothing between).

Hierarchical Menus

You can use this AiF escape sequence to create hierarchical menus (that is, menus containing menus), by including the name of a
pre-defined menu as one of the command IDs.

Menu Example

To create a menu called fonts, containing the commands bold and italic, and the sub-menu size, use the following AiF escape
sequences:

ESC_33 ; 10 w size ; Font Sizes ; eight ; ten ; twelve ESC\
ESC_33 ; 10 w fonts ; Character Fonts ; bold ; italic ; size ESC\

The sub-menu size contains the commands eight, ten and twelve.

Displaying Menus

To place pre-defined menus in the menu bar, use the following AiF escape sequence:
ESC_33 ; 11 ; c-num w c-id1 ... menu-ids ESC\

Where:

c-num Number of command IDs to be inserted on help menu.

c-id1 ... Command IDs to be added to help menu.

menu-ids IDs of menus to be installed in menu bar.

The host menus will be inserted to the left of the Help menu, but left aligned (that is to the right of all the inbuilt non-help menus).

You can also give command IDs to be added to the help menu, in a separate section.

Removing Menus

To remove menus from the menu bar, pass the control IDs of the menus to be inserted in the menu bar, in the order you want them.
All host menus that are not named will be removed from the menu bar if already there.

So to remove all host menus, use this AiF escape sequence, without naming any menus.

Enabling/Disabling Menus

To enable/disable a whole menu, use the following AiF escape sequence:
ESC_33 ; 12 ; dis w menu-id ESC\

Where:

dis 1 = disabled, 2* = enabled.

menu-id Menu ID

Changing Fonts

To change the font of characters displayed on your terminal, use the following AiF escape sequence:
ESC_93 {; size} w {name} ESC\

Where:

size New font size. * = current font size.

name Name of font. * = current font.

For example, to switch display font to Letter Gothic 18 point, use the following AiF escape sequence:
ESC_93 ; 18 w Letter Gothic ESC\

Windows automatically selects the closest available match to the font you select.

This sequence is equivalent to using the Font... option of the Configure menu. If you change the font size, this automatically
switches Maintain Aspect Ratio on. If you have set Snap To Frame or Best Fit, changing the font size has no effect.

Invoking Windows Help

To invoke Windows Help, use the following AiF escape sequence:
ESC_94 ; 1 ; invoke w file ; context ESC\

Where:
invoke Specifies how to invoke Windows Help:

1*= HELP_CONTEXT

2 = HELP_CONTEXTPOPUP

3 = HELP_CONTENTS

4 = HELP_KEY

5 = HELP_PARTIALKEY

6 = HELP_COMMAND

7 = HELP_HELPONHELP

8 = HELP_QUIT
file Help file name. If missing, the HOSTACCESS help file is used
context Either a help context number (if invoke = 1 or 2), a help

keyword or partial keyword (if invoke =4 or 5), a help macro
string (if invoke =6), or is ignored

See the Microsoft Windows Help Authoring Guide documentation for details of WinHelp() and the HELP_... functions.

Timed Events

To return a notification after a set time period has elapsed, use the following AiF escape sequence:
ESC_95 ; delay ; t-event ; a-event w ESC\

Where:

delay The number of seconds to wait before triggering

t-event 1 = turn timed events off

2 = turn on one timed event

3 = turn on regular timed events (every time interval)

a-event 1 = turn activation events off

2 = turn activation events on

The return notification takes the following format:
<STX > Type <CR> 1 <CR>

Where:

Type A string:

“TI” to signal a timed event

“AC”: to signal that HOSTACCESS has been made active
(gained focus)

Common Problems

Some common problems you may encounter using the Windows AiF features are described, with suggested solutions.

Sculpting.
Control Management.
Secondary Windows.
Buttons.
Toolbars and toolboxes.
Fonts.

Sculpting - solving problems

Sculpted Boxes/Lines do
not appear

Check that you have turned the
sculpture mode on

Sculpted Boxes/Lines still
appear after application
ends

Check you have turned the sculpture
mode off

Control Management - solving problems

Cannot Change Control
Colour

Check that you have the correct control
name
Check that you change the colour after
displaying the control

No Response From
Clicking a Control

Check that the event has been set up
correctly with the correct name
Check that the control you are using has
a response - some do not have an
attached event
Check that the mouse is working
correctly
Check that the correct event number has
been enabled for the control.

Click here for details

Secondary Windows - solving problems

Cannot switch from a
secondary window

Check that the window is modeless

Buttons - solving problems

No image appears Check that the image file exists, and is of
the correct type. See Describing images
for details

Toolbars and Toolboxes - solving problems

Toolbars or Toolboxes do
not appear

Check that you have specifically set the
toolbox or toolbar to show. Click here

 for more information.

Fonts - solving problems

Control¢s font is different to font
specified.

When you create a control
containing text (for example, an
edit box), and you specify the font
(for example, Helvetica 8), this
font may be changed in your
display. This is because Windows
substitutes certain font, as
specified in the [fontsubstitutes]
section of the user¢s WIN.INI file.
For example, Arial may be
substituted for Helvetica

To alter this, alter the font
substitution - see your Windows
programming guide for details

Note: If a font is not defined on the user¢s PC, Windows always tries to match to the closest available font.

AiF Utilities

The following topics describe how you can use the Applications interface Facility (AiF) to exploit the power of library routines and
screen manipulation features. HOSTACCESS provides a sophisticated, application driven workstation. While continuing to support
existing applications unchanged through industry standard terminal emulations, it can also introduce a PC style user interface to
host applications with colour, windows, pop-down menus and many more features.

How AiF sequences work.
Types of sequence.
Sequence summary.

How AiF Sequences Work

The AiF supports standard ANSI X3.64 compliant ESCape sequences that may be used by host applications to drive the AiF
features. These are called AiF sequences.

Any host process that can send output to a terminal can also make use of AiF by sending special AiF sequences to HOSTACCESS
running on a PC. HOSTACCESS intercepts these sequences and takes the appropriate action (for example, saving a screen
image).

Software developers normally define these AiF sequences so that they can be referenced globally as variables by their applications
code (either at run-time or compile time).

Types of Sequence

HOSTACCESS expects the AiF sequences to conform to a certain format. Every screen AiF sequence starts with the ESCape
character (ASCII decimal value 27). The next two characters in the sequence depend on the type of feature required.

The semi-colon character is used as a delimiter to separate parameters in a sequence.

Note: a common programming error when using AiF sequences is to forget/misplace the delimiters.

Screen manipulation sequences.
Library sequences.
Sequences summary.

Screen Manipulation Sequences

This type of sequence is called an ANSI CSI (Control Sequence Introducer). Generally, these format sequences usually denote that
the sequence is being used by HOSTACCESS for colour, box or line drawing, saving/restoring screen images, etc.

This type of sequence requires a terminating character, telling the AiF what facility is required - these are described for each
sequence.

Format: left square bracket and equals sign ([=), terminated by a lower-case character.

So an entire sequence in this format can be described as:

ESC [= A1 ; A2 ; ... An f

Where:

ESC Is an escape character (decimal value 27)

A1 ... An Are parameters (typically colour attribute setting,
column/row coordinate.

f Is a lower case terminating character, such as 'x' for box
drawing

Library sequences.
Sequences summary.

Library Sequences

This type of sequence is called an ANSI APC (Application Program Command). Generally, this format denotes that the sequence is
being used by the AiF to interface into main DOS library routines, such as Pop-Down Menus.

Format: Underscore ‘_’, followed by a capital letter terminated by ESC \. So an entire sequence in this format can be described as:

ESC _ B1 ; B2 ; ... Bn F data string ESC \

Where:

ESC Is an escape character (Decimal value 27)

B1 ... Bn Are parameters. These parameters depends on the AiF
sequence.

F Is an upper-case letter (such as ‘X’).

data string Is optional data for the AiF, such as box heading text.

ESC\ Is the escape character (decimal value 27), followed by a
backslash character ‘\’

Note: spaces are shown between characters only for the purposes of clarity - these spaces should not be included within the
sequence itself.

Sequences summary.

Sequences Summary

The following screen AiF sequences are supported:

Applications environment.
Screen display optimisation.
Box drawing.
Keyboard control.
DOS integration.
Windows integration
Dynamic Data Exchange (DDE)
Micellaneous facilites.

Applications Environment

Set colour ESC [= A1 ; A2 ; A3 ;....An m
Switch ANSI colour mode
ON

ESC [= 7 h

Switch ANSI colour mode
OFF

ESC [= 7 l

Detect colour/mono monitor ESC [= 6 n
Detect blinking status ESC [= 7 n
Open window ESC [= Y1 ; X1 ; Y2 ; X2 ; WT ; A1 ; ... ; An u
Close window ESC [= F v
Window heading ESC _ X1 ; A1 ; ... ; An W ...title... ESC \
Window footing ESC _ X1 ; A1 ; ... ; An U ...title... ESC \
Load exit keys ESC _ Z exit_keys ESC \
Reset pop-down menus ESC [= 2 ; SN l
Load pop-down menus ESC _ N1 ; SN M H1 ; E1 ; E2 ; .. ; En ESC \
Activate pop-down menu ESC [= 22 ; SN ; m ; e ; Y1 h
Close current pop-down
menu

ESC [= 22 l

Reset cascading menus ESC [= 2 ; SN l
Load cascading menus ESC _ N1 ; SN M H1 ; E1 ; E2 TC CN ; .. ; En ESC

\
Activate cascading menu ESC [= 22 ; SN ; m ; e ; Y1 h
Close cascading menus ESC [= 22 l
Re-set selection boxes ESC [= 24 ; SN l
Load selection boxes ESC _ SN ; Y1 ; X1 ; DT ; BT ; MT ; MW S H1 ;

E1 ; E2 .. En ESC \
Activate selection boxes ESC [= 23 ; SN ; En h
Activate selection boxes in
previously opened window

ESC [= 24 ; SN ; En h

Close selection boxes ESC [= 23 l
Activate Line input ESC [= 25 ; FL ; VL ; SM h
Activate Box input ESC _ Y1 ; X1 ; FL ; BS ; BT ; VL ; SM J text ; title

ESC \
Invoke window editor ESC [= 26 h
Load exit keys ESC_Z exit-keys ESC \
Push environment ESC [= 99 p
Pop environment ESC [= 99 q

Screen Display Optimization

Save SLOT number N. ESC [= N p

Restore SLOT N to screen. ESC [= N q

Push screen image onto
SLOT STACK.

ESC [= p

Pop screen image from
SLOT Stack.

ESC [= q

Write to FORM number Fn,
form version number Fv

ESC [= Fn ; Fv ;1 s TEXT ESC [= s

Display from FORM number
Fn

ESC [= Fn r

Change FORM file name. ESC _ F DOS_form_file_name ESC \

Clear currently active FORM
file.

ESC [= s

Request FORM file version
number

ESC [= Fn ; 1 r

Freeze ON. ESC [= 1 h

Freeze OFF. ESC [= 1 l

Turn host echo on ESC [= 13 h

Turn host echo off ESC [= 13 I

Drawing Boxes

Draw box ESC [= Y1 ; X1 ; Y2 ; X2 ; BT ; A1 ; ... ; An x

Draw Line ESC [= Y1 ; X1 ; Y2 ; X2 ; LT ; A1 ; ... ; An z

Display message. ESC [= C1 ; A1 ; ... ; An w message CR

Clear message line. ESC [= w CR

Force system message line
display

ESC [= 11 h

Force HOSTACCESS status
line display

ESC [= 11 l

Set mode specified by n ESC [= 3 ; n h

Reset to user configured
screen mode

ESC [= 3 l

Selects block cursor ESC [= 4 h

Selects line cursor ESC [= 4 l

Cursor ON ESC [= 10 h

Cursor OFF ESC [= 10 l

Set screen fill character to
character with ASCII value
nnn

ESC [= 12 ; nnn h

Reset fill character to space ESC [= 12 l

Switch to PC font table
specified by n

ESC [= 9 ; n h

Reset default font table ESC [= 9 l

Suppress screen output
outside current window

ESC [= 5 h

Disable output suppression ESC [= 5 l

Center text in window ESC _ Y1 C text ESC \

Build script file ESC_ sscripttext ESC \

Keyboard Control

Program Function Key n. ESC _ n K Key data ESC \

Switch scancode keys ON ESC [= 6 ; p h

Switch scancode Keys OFF ESC [= 6 l

Switch typeahead ON ESC [= 20 h

Switch typeahead OFF ESC [= 20 l

Enable command stack ESC [= 21 h

Disable command stack ESC [= 21 l

Detect if mouse installed ESC [= 8 n

Switch mouse monitoring ON ESC [= 27 ; n h

Switch mouse monitoring
OFF

ESC [= 27 l

DOS Integration

Invoke DOS gateway ESC _ sc ; 0 D Cmd1 ; ... ; Cmdn % keys ; Cmdnn ESC \

Print screen. ESC [= 0 I

Switch OFF direct (slave)
printing.

ESC [= 4 I

Switch ON direct (slave)
printing.

ESC [= 5 I

Change current print device. ESC _ L device.name ESC \

Erase single DOS file ESC _ E filename ESC \

Request working DOS run
directory

ESC [= 9 n

Verify DOS path ESC _ G path ESC \

Windows Integration

IMAGE /I filename {/T title} {/Z zoom} {/F}
Displays an image IMAGE /I filename {/T title} {/Z zoom} {/F}

Closes an image application. ESC _ x AP ESC \

Control Window state ESC _ ST c AP ESC \

Start any Windows program
on the desktop

ESC _ ST e PN ESC \

Detect if Windows application
is running

ESC _ a AP ESC \

Send keys in DOS keyboard
stacker format to specified
Windows application

ESC _ k AP % keys ESC \

Dynamic Data Exchange (DDE)

Close a DDE link already
established with Initiate
DDE sequence

ESC _9d SN;TP ESC \

Send commands to server
application

ESC _ 2 ; TM d SN ; TP ; MA ESC \

Open a DDE channel with a
server

ESC _ 1d SN;TP ESC \

Pass data to server ESC _ 3 ; TM d SN ; TP ; IT ; ST ESC\

Retrieve data from server ESC _ 4; TM d SN ; TP ; IT ESC \

Miscellaneous Facilities

Close HOSTACCESS from
host.

ESC _ X ESC \

Request serial number. ESC [= 1 c

Returns information about
HOSTACCESS and its run-
time environment.

ESC [= 10 n

Send screen to host system. ESC [= 2 I, ESC [= 2 ; n I

Change emulation ESC [= n {

Tailoring the Environment

A user of an application should easily and intuitively understand how it works and interacts. Presentation (the user interface) is the
most important part of an application’s acceptability. The AiF enables developers to design sophisticated and friendly application
user interfaces without the need for complicated coding.

Interface aspects that can make an immediate impact on users are:

· Colour: enlivens any application by drawing the user's attention to important areas of the screen.

· Windows: can be used to provide an interface into any other application or sub-task without changing the underlying screen
image. Applications no longer need to keep track of screen images as users navigate through application layers

· Menus: offer a speed and style to selecting options that is unrivaled but totally under the control of the host application

· GUI:Click here for further details.

Using Colours

HOSTACCESS supports ANSI standard colour sequences in most of its Terminal Emulations.

Standard terminal video attributes are mapped into colour by default (such as bold into red on black), enabling existing applications
to use colour without modification.

We have also defined a series of ANSI compatible colour sequences so you can use any PC colour from within any application
regardless of the terminal type being emulated by HOSTACCESS.

ESC [= A1 ; ... ; An m

Where A1 ... An can have the following values:
0 All attributes off (colours are

reset to light Gray text on Black
background).

1 Intense on.
2 Intense off.
22 Intense off.
7 Reverse on.
27 Reverse off.
30 Foreground to Black. 40 Background to Black
31 Foreground to Red. 41 Background to Red
32 Foreground to Green. 42 Background to Green
33 Foreground to Brown. 43 Background to Brown
34 Foreground to Blue. 44 Background to Blue
35 Foreground to Magenta 45 Background to Magenta
36 Foreground to Cyan 46 Background to Cyan
37 Foreground to Light Gray 47 Background to Light Gray
Click here for an example.
The 16 PC foreground colours are achieved by using the 8 colours above with or without the intense bit set. See the following topics
for further information:

The intense bit set.
Resetting the colour parameters to the default setting.
Using colours example.
Switching ANSI Colour Mode On/Off.

The Intense Bit Set

Colour Attribute
Value

Colour Value Attribute

Black 30 Dark Gray 30;1
Red 31 Light Red 31;1
Green 32 Light Green 32;1
Brown 33 Yellow 33;1
Blue 34 Light Blue 34;1
Magenta 35 Light Magenta 35;1
Cyan 36 Light Cyan 36;1
Light Gray 37 White 37;1

To set the screen colours back to the current HOSTACCESS default colours use the AiF sequence:
ESC [0 m

This restores the colours to the state they were in when HOSTACCESS was loaded or to the colours set by the last ESC[=90..m
sequence (described immediately below).

Special values may be assigned to the first attribute in the colour sequence to change the normal text colour and the default colour
settings for application driven AiF Menus.

The following attribute values apply:

A1 = 90 Changes the default normal colour, used for clear
screens, clear to end of line, etc.

A1 = 91 Changes the Window and Box Shadow colours.

A1 = 97 Changes the main Menu colour.

A1 = 98 Changes the selection character colour in Menus.

A1 = 99 Changes the Menu highlight 'bar' colour.

(Remember, if the first attribute is not one of the above values, the current colour attributes will be changed.)

Resetting the colour parameters to the default setting.
Using colours example.
Switching ANSI Colour Mode On/Off.

Resetting the colour parameter to the default setting

To reset the appropriate parameter to the default setting, use one of the following sequences:
ESC [= 90 m
ESC [= 91 m
ESC [= 97 m
ESC [= 98 m
ESC [= 99 m

The intense bit set.
Using colours example.
Switching ANSI Colour Mode On/Off.

Using Colours Example - DOS AiF

To reset the user's default foreground and background screen colours to white text on a Blue background use the following
command sequence:

ESC [= 90;0;1;37;44 m

and then clear the screen.

Note: attribute parameters change only one component each, e.g. 'ESC [= 37 m' changes the foreground colour to white but does
not affect the background colour, intensity.

 If colour is simply used to highlight (say) an error message, and the you do not want to reset the current colour attributes, you can
simply open a window to display the message. Within this window the colours may be configured without affecting the current
screen's attributes. Once the user has read the message display in the window, the application program simply closes the window.

Switching ANSI Colour Mode On/Off

Use this AiF sequence to tell HOSTACCESS to support ANSI standard colour sequences in all of its Terminal Emulations.

Normally attributes such as flashing, intense and reverse are mapped through HOSTACCESS's internal tables into special colours
so as to give monochrome applications some immediate colour (without the need to change these applications). In ANSI Colour
Mode, video attributes are applied literally.

Use the following sequence:
ESC [= 7 h switches ANSI Colour Mode on.
ESC [= 7 l switches ANSI Colour Mode off.

Developers are now able to standardize on ANSI colours and video attributes throughout their applications, regardless of which
terminal emulation the user decides to choose.

Using Windows

AiF's programmable windows is one of HOSTACCESS's most powerful features. Properly used it can liberate applications from the
restrictions of only being able to display information on one screen at a time.

AiF windows allow applications to open up a 'virtual' screen of any size anywhere on the current screen. All output sent by the
application to the PC's screen will be displayed within this window. Cursor addressing is now relative to the top left-hand corner of
this window. If the application clears a screen, changes a video attribute, or the fore/background colours, etc., these will only affect
the area of the screen that is inside a window.

Any number of windows may be opened and effectively layered on top of each other. Closing a window reactivates the previously
opened window or the original screen, if no other windows have been opened.

It is useful, in some circumstances, to be able to close a window and leave its contents behind on the screen - this is one of the
many options available with windows. Other options include Headings, Footings, borders and other effects.

Windows AiF sequence.
 Closing a window.
 Windows headings and footings.

Windows AiF Sequence

ESC [= Y1 ; X1 ; Y2 ; X2 ; WT ; A1 ; ... ; An u

Where:

Y1 Top left-hand row.

X1 Top left-hand column.

Y2 Bottom right-hand row.

X2 Bottom right-hand column.

WT Describes the window type:

0 No border.

1 Single line border.

2 Double line border.

3 Single line at top and bottom, double at sides.

4 Double line at top and bottom, single at sides.

32 Do not clear screen behind window.

64 Shadow window.

128 Explode window.

A1 ... An Optional parameters to set the window colour. If not
present, the current colour attribute is used.

To open a window starting at the top left-hand corner of the screen, set X1 and Y1 to 1.

To centre the window within the current screen, set both X1 and Y1 to 0 (zero). In this case, the window size is determined by the
absolute values of X2 and Y2.

To centre the window in the "zeroed" plane, set either only X1 or Y1 to 0 (zero) , i.e. either horizontally or vertically.

Note: the last three values for WT are additive, e.g. a single line bordered window that is exploded and shadowed has a WT value
of 193 (1 + 64 + 128 = 193).

Closing a Window

To close the window use the following sequence:
ESC [= F v

Where:

F = 0 If F is zero or absent then the screen behind the
window is restored.

F = 1 To leave window contents on screen.

Example

The application needs to display an important message, and ensure that the user has noticed it by waiting for acknowledgment.
Conventional applications reserve one line for messages or try to attract the user's attention by putting the message in reverse video
and possibly in some sort of box. However, the user might miss the message, and the message is displayed at the cost and time of
having to redisplay the whole of the underlying screen. Use AiF to avoid these problems. To output a message ERROR! in White
text in a Red window and then wait for user input, use the following AiF escape sequence:

ESC[=16;36;18;44;1;0;1;37;41u
ESC[2;2H
ERROR!
input dummy
ESC[=v

Window Headings And Footings

A heading and/or footing may only be displayed within the border of a window. If the window has been opened without a border, then
headings and footings are ignored.

To put the title in the top of the window border, use the following sequence:
ESC _ X1 ; A1 ; ... ; An WTitle.... ESC \

To put the title in the bottom of the window border, use the following sequence:
ESC _ X1 ; A1 ; ... ; An UTitle.... ESC \

Where:

X1 Is the starting column of title. If set to 0, or absent, the text is
centered.

A1 ; ... ; An Are the colour attributes

W Is the literal ‘W’

U Is the literal ‘U’

Title Is the text for the title

ESC\ Is the terminator.

If the title text is wider than the window border it will be ignored. If no colour attributes are specified then the current window
attributes are used.

Footings are treated in the same way as headings with regard to positioning and attributes.

To clear a heading or footing that has been previously placed on a window simply send the heading or footing sequence as
appropriate, with the "Title" set to null.

Click here for an example.

Example

Use the following sequences to open a window with coordinates 8,30 and 12,50 in Yellow text on a Blue background with a footing
in White text on Red containing the text 'Help'. The window is to be exploded, shadowed and with a border.

ESC[=8;30;12;50;196;0;44;33;lu
ESC_0;37;1;41UHelpESC\

Using AiF menus

Two basic types of menus are supported by AiF - these are pop-down menus and selection boxes.

Pop-down menus work on the principle of a menu bar (usually across .the top of the screen) from which lists of menu elements pop-
down as the user moves left or right between menu headings on the bar. Any element within a pop-down menu may cascade into
another pop-down menu.

Selection boxes (pop-up menus) work on the principle of popping up a single list of selections (anywhere on the screen) and
allowing the user to move up and down this list to make a choice.

There are three AiF sequences that control the use of AiF Menus from within an application.

One sequence enables an application to load Menus into the PC memory in readiness for activation by the application using a
second AiF sequence.

Once a menu has been activated, HOSTACCESS does all the work in processing the user selection and returns the user's choice to
the host application. The application can then translate this choice into the required action and process the user's choice as it would
normally do. Once an application has received the user's menu choice, it is normal to "close" the menu so that the underlying screen
can be updated by the application, if required. Each AiF menu type has its own close menu sequence.

A separate AiF sequence is provided to clear specified menus from HOSTACCESS's memory.

Options available for menus.
Loading more than one menu at the same time.

 Colour configuring menus.
 Configuring selection characters and separators.
 Exit keys.
 Pop-down menus.
 Selection boxes.

Menu Options

A variety of options is available for AiF menu types. The options include:

Menu
Type

Option Description

all To allow host applications to have access to more than one
menu set at any time by saving these into areas of PC memory
(called menu slots) without the need to reload each menu set.

all To colour configure every aspect of any menu.

all To specify each menu heading's and menu element's selection
character for fast single keystroke selection.

all To provide a variety of exit keys with which the user may choose
to leave the menu (e.g. Allowing f10 as a "help exit key" from a
menu).

all To cater for user's typeahead within menu processing.

all To use a variety of menu styles, including Novell and separator
lines within lists of menu elements.

all To optionally leave the menus displayed on the screen after the
user has made a selection.

all To store menu loading sequences (together with headings and
elements) on the PC's disk in special AiF files called forms. This
can be useful to speed up menu loading - for a fuller discussion
on this, see FORMs.

pop-down To reposition the pop-down menu bar to any row on the screen.

selection
boxes

To run selection boxes (pop-up) menus within AiF windows.

The options that apply to all menu types are documented in the following sections. Menu type specific options are then documented
within each menu type in the appropriate Pop-Down menu section.

Local processing of user's keyboard inputs may be controlled by host applications if they need a typeahead facility. Please see
Typeahead Mode for more details.

Loading more than one menu at the same time.
 Colour configuring menus.
 Configuring selection characters and separators.
 Exit keys.
 Pop-down menus.
 Selection boxes.

Menu sets

Menu sets enable host applications to load more than one menu into the PC's memory at the same time. Each menu set can be
instantly activated by sending the appropriate AiF sequence to activate the menu from a specified menu set.

Host applications need to specify the menu set required when they load EACH menu to the PC. This menu set number is the 'SN'
parameter (see Pop-Down Menus) on the load menu sequences and will default to 1 if not specified.

Host applications need to ensure that they do not create menu set number conflicts, by loading two or more menu sets into the
same menu set number. In this case, the last loaded menu will be the one used when the menu set number is selected.

HOSTACCESS supports a maximum of 50 menu sets for EACH menu type.

The following overall limitations apply:

Menu Type Overall Limitations

Pop-down Maximum number of pop-down menu sets. 50

Maximum menus per menu set. 100

Maximum menu elements per menu. 20

Maximum menu elements per menu set. 2,000

Maximum number of menu elements across all
pop-down menu sets.

100,000

Selection
box
(pop-up)

Maximum number of selection box sets. 50

Maximum size (bytes) of all menu elements per
menu set.

32,000

Assuming 30 bytes per menu element,
approximate maximum number of menu
elements per menu set.

1,066

Approximate maximum number of menu
elements across all menu sets.

53,300

These limitations are intended as guidelines only - host applications should never need to even approach them. These limitations
are also constrained by the available memory on the user's PC.

 Colour configuring menus.
 Configuring selection characters and separators.
 Exit keys.
 Pop-down menus.
 Selection boxes.

Colour Configuring Menus

An application using the AiF menus can change the default colours of its menus so that they can be differentiated from other
applications' menus. This is done through an extension to the AiF colours sequence. By including a code in the range 97 to 99 as
the first parameter, HOSTACCESS applies the subsequent parameter values as colour attributes for the AiF Menus.

These parameters have the following meaning:

97 Set the colours of the menu bar and pop-down/up menus.

98 Set the colours of the select character.

99 Set the colours of the highlighted selection bar

Both foreground and background colours may be set with each of these parameters.

Note that a menu's colours are determined when the menus are loaded to the PC and are retained with that menu. Menu colours
cannot be dynamically changed by an application unless the menu is reloaded after the menu colours have been changed.

Sending these AiF colour sequences with no colour parameters after the 97, 98 or 99 sets the appropriate menu colours back to the
system defaults.

 Configuring selection characters and separators.
 Exit keys.
 Pop-down menus.
 Selection boxes.

Configuring Selection Characters & Separators

As each menu's list of selections is loaded it is possible to tell HOSTACCESS which character within each element should be
highlighted as the selection character.

Maneuvering through menus by the user is extremely simple and fast and is consistent with the way in which a user would move
through HOSTACCESS's own configuration menus .

The first character of each element will be used as the selection character by default, if a particular character is not specified.

To designate any character within the menu element as the selection character, simply prefix the desired character with an
ampersand "&" . If an ampersand is required as part of the text of a menu element then a double ampersand "&&" can be used to
achieve this.

Selection characters may be specified in all menu types and in any menu element (including the menu headings on the menu bar for
Pop-Down menus).

If a null menu element is sent to HOSTACCESS, it is treated as a separator. HOSTACCESS displays a line in the position of the null
element. This is useful for breaking up groups of different menu choices within a single menu list.

 Exit keys.
 Pop-down menus.
 Selection boxes.

Menu - Exit Keys

All the AiF menus allow the user to exit the menu by pressing an exit key defined by the host application. If these are not defined, a
user can exit menus with a carriage return (to show acceptance of the selected elements) or by pressing the ESCape key (to show
non-selection of any element and exit the menus completely). However, configurable exit keys give host applications immense
flexibility in the way in which they handle user selections within AiF menus.

For example, using defined exit keys, an application can provide a "help" hot-key (say Function Key 10) for any element within any
menu. The user is able to press F10 to ask the application to display help and then return instantly back into the menus to move or
make a selection.

In addition, exit keys can be used by applications as "menu-wide" exits. For example, you could define F2 to always process the
same event, regardless of where the user is within the current menu set. This allows fast maneuvering and selections of actions
from within menus.

Loading application specific exit keys.
User response.
Example.

Loading Application Specific Exit Keys

To load application specific exit keys as required, use the AiF sequence below:
ESC _ Z exit_keys ESC \

Where:

Z Is the capital letter Z - AiF code for exit keys.

exit_keys Are the exit keys that the application will recognize
when returned from the AiF menu. These are in the
mnemonic format as described in DOS Keyboard
Stacker, e.g. as CR for carriage return, ES for ESCape,
F1 for function key 1, etc.

User response.
Example.

User Response

When exit keys have been configured and loaded to HOSTACCESS the user's response from a menu will be returned to the host
application in the following format:

<STX> exit_key <CR> menu_path <CR>

Where:

<STX> Is the special start of text character with ASCII decimal
value 002.

exit_key Is the mnemonic for the exit key used to leave the menus.
(as described above). If you define single characters as
exit keys, these are returned as 2 characters. For example,
'X’ is returned as a space followed by the letter X (i.e. ' X').

<CR> Is a carriage return character with ASCII decimal value
013.

menu_path

Is the path in the form of menu element number(s) for the
currently highlighted menu element, delimited where
appropriate by commas ",".

Note that the menu_path is always returned, regardless of which exit key was used. To reset the exit keys to the default, set exit-
key to null.

Exit keys examples

To load HOSTACCESS with the exit keys required for Menus so that only Carriage Return, ESCape and the Function Keys F1 and
F2 are permitted, use the following AiF sequence:

ESC _Z F1 F2 ESC \

For example, the menu bar currently highlights the second element in the third pop-down menu. If the user pressed Function Key 2
the following would be returned to the host application:

<STX> F2 <CR> 3,2 <CR>

(Function Keys 1 to 10 mnemonics are F1..F9 with F0 for F10).

If the user pressed Enter the following would be returned to the host application:
<STX> CR <CR> 3,2 <CR>

where the first CR is the literal letters "CR" (the other <CR>s are carriage returns, ASCII 013).

It is important to note that exiting either pop-down or selection boxes by pressing the ESCape key will return a menu path of 0,0 or 0
respectively.

You should turn terminal echo off before getting the response from AiF menus, so that this is not displayed on the user's screen. You
can use an AiF sequence to suppress host echoed output that may be used instead of the host system's equivalent command. For
more details, see Host Echo On/Off. Terminal echo should be turned back on once the menu response has been input.

Exit keys are common between the AiF Menus, Field Inputs and responses from Image displays - it is the application's responsibility
to maintain different exit keys between menus, field inputs and Image displays, if required.

Pop-Down Menus

The AiF sequences needed to use pop-down menus are documented below in the logical order that they would be used by a host
application:

Clear pop-down menus
Load pop-down menus.

 Activate pop-down menus.
Get user response to pop-down menus.
Close pop-down menus.

All the sequences below are assumed to be for menus running in the default AiF menu set, i.e. menu set 1 (one).

Click here for information on cascading pop-down menus.
Up to 100 menus may be loaded at any one time and each menu may contain up to 20 elements. Each element may be a maximum
of 78 characters long. This means that one menu set can be used to present the user with up to 2,000 options.
Pop-down menus automatically justify menu headings across the menu bar. A maximum of 8 menu headings may be presented on
the menu bar. Menu headings are truncated if their total width exceeds the current screen width.

Menus can be dynamically reconfigured to suit the application's requirements. At any point, the host application may reload any
menu simply by re-sending the AiF sequence for that particular menu. In this way, menus can be modified dependent upon how the
application interprets the user's selections, actions, access security and so on.

Click on the following buttons for examples.

Example 1.
Example 2.

Clearing Menus

The following AiF sequence clears all application Pop-Down menus from the menu set SN in the PC's memory:
ESC [= 2 ; SN l

Where SN is an integer between 1 to 50.

Load pop-down menus.
 Activate pop-down menus.

Get user response to pop-down menus.
Close pop-down menus.

Loading Menus

To load a pop-down menu into HOSTACCESS's memory on the PC, use the following sequence:
ESC _ N1 ; SN M H1 ; E1 ; .. ; En ESC \

Where:

N1 Is the menu number from 1 to 100. Only menu
numbers 1 to 8 may be presented from the
menu bar. The first element in each of these
menus will be taken as the heading for that
pop-down menu.

SN Is the menu set number from 1 to 50 (if not
specified, default is one).

M Is the capital letter 'M' - AiF code for Menus.

H1 Is the first parameter and will be used as this
Pop-Down Menu's heading in the Menu Bar for
menu numbers 1 to 8 only. For all other menus,
this is the first menu element.

E1..En Are the menu elements, up to 20 per Pop-
Down Menu.

Note: Menu Heading and Element text strings should not contain semi-colons (interpreted as element delimiters). Nor should they
contain control characters, which will corrupt the menu text.

 Activate pop-down menus.
Get user response to pop-down menus.
Close pop-down menus.

Activating Pop-Down Menus

Use the following sequences to activate the Pop-Down Menus for user interaction:
ESC [= 22 ; SN h

Runs the menu set number SN starting at menu 1 element 1, unless the menu has been used before, in which case it starts at the
last selection.

You may optionally extend this sequence to specify that a specific element in a specific menu be activated as the highlighted option
when the menu set is invoked by the AiF sequence below:

ESC [= 22 ; SN ; m ; e ; Y1 h

Where:

SN Is the menu set number and is integer between 1 and 50.

m Is the menu number to be activated.

e Is the menu element number to be activated.

Y1 Is the row number on which the menu bar will be displayed (i.e.
between 1 and the current screen depth).

If a row number that equals the current screen depth (normally 24) is used then no pop-down menus will be available from the menu
bar.

This sequence will run the current menu set number SN starting at top-level menu 'm', element 'e'.

If the m;e parameters are set to 0;0 then HOSTACCESS automatically activates the menu at the last 'remembered' menu position
and redisplays the menu set through to the last selected option (within cascades if appropriate). If these are set to "0;0" and this is
the first time the menu is invoked, then the option in menu 1, element 1 is highlighted when the menu is activated.

When the Pop-Down Menus are activated they appear over the existing screen. As the user moves through the menus,
HOSTACCESS instantly refreshes the underlying screen.

Get user response to pop-down menus.
Close pop-down menus.

Getting a Pop-Down Menu Response

AiF Pop-Down Menus allow a user to maneuver around the menus using the up, down, left and right arrow keys. The Home and
End keys will move the highlight bar to the top and bottom of a Pop-Down Menu list. To select a menu option, the user presses the
Enter key (or a valid exit key) when the highlighted element is the required option. Pressing the ESCape key at any point allows the
user to exit from the Pop-Down Menus. To jump left or right between menus when on the menu bar, press <Control> plus the letter
of the menu’s highlighted selection character.

HOSTACCESSs AiF handles all of the menu movement and underlying screen refreshes without any intervention or additional code
on the host system. Once a user selects an option, AiF will send the selected Menu number and the Element number to the Host
system. It is a simple matter for the host application to interrogate this response and determine which option the user has chosen.

The Pop-Down Menu response from AiF takes the format:
<STX> exit_key <CR> Mn,En <CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value 002).This
character indicates the start of the menu response string and
enables the application to discard any typeahead input that could
have been sent before the response string itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker format (as
defined on DOS Keyboard Stacker - see also Loading Exit Keys
for the key used by the user to exit from the menu.

<CR> Is a carriage return (ASCII decimal value 013).

Mn,En Is the menu path of the option selected as returned by
HOSTACCESS, where:

Mn Is the number of the option selected, from 1 to 100.

En Is the menu element number of the option selected digit
number, from 01 to 20.

Please refer to the examples below to see the logic required to obtain an AiF menu response.

Click on the following buttons for examples.

Example 1.
Example 2.

If the user hits the ESCape key whilst in menus, the menu number and element number are both returned with a value of zero.

Closing Pop-Down Menus

Use the following sequences to close the Pop-Down Menu:
ESC [= 22 l

Closes the currently open Pop-Down Menu.

When the Pop-Down Menus are activated they appear over the existing screen. If another Pop-Down Menu had previously been
activated, it would have been closed by the activation of the current menu. In other words, there is no concept of a "stack" of open
Pop-Down Menus and applications should only need to issue one close menu command.

A close menu sequence must be sent to HOSTACCESS before the application can correctly update the underlying screen. If the
menu is not closed, the screen update may appear within the "window" opened for the currently active Pop-Down Menu's element
list.

Closing the pop-down menu does not remove it from the PC's memory. The same menu may be reactivated at any time with the
"activate menu" AiF sequence.

Click here for pop-down menu example 1.

Click here for pop-down menu example 2.

Pop-down menu example 1

To change the application menus to be Black letters on a Light gray background, with the select character in Red and the selection
bar with White characters on a Black background use the following 'code':

menu_color = 'ESC[=97;0;'
select_color = 'ESC[=98;0;'
hilight_color = 'ESC[=99;0;'
send to PC menu_color '30;47m'
send to PC select_color '31;47m'
send to PC hilight_color '1;37;40m'

Pop-down menu example 2

The code below illustrates a schematic structure for loading and activating AiF's Pop-Down Menus and for interrogating the AiF
menu response. Developers can use this type of logic to provide their applications with a common routine that handles all the AiF
menus processing.

* assign variables for menu text *
*and number of menus *
get menu_text
get nbr_of_menus
* clear any existing menus (from menu set 1) *
send to PC 'ESC[=2;1l'
* load the Pop-Down Menus using the following code*
* (into the default menu set number 1) *
menu_nbr = 1
loop
while menu_nbr <= nbr_of_menus
 this_menu = menu_nbr ; 1 'M' menu_text(menu_nbr)
 send to PC 'ESC_U this_menu 'ESC\'
 menu_nbr = menu_nbr + 1
repeat
* activate the pop-down menu *
* and interrogate the AiF Menu response as follows *
quit = false
loop
 * get AiF menu response prefix *
 send to PC 'ESC[=22;1h'
 loop
 turn terminal echo off
 input menu_prefix
 until ASCII char 002 found in menu_prefix do
 repeat
* now get the user's menu selection *
 menu_nbr = 0
 input menu_coordinates
 extract menu_nbr (from menu_coordinates)
 extract menu_element_nbr (from menu_coordinates)
 if menu_nbr = '0' then
 quit = true
 end if
 turn terminal echo on
* now process the option selected... *
* as any application would do so ... *
* Remember, you will need to close the menu if
* you need to update the screen ... *
until quit do repeat

This 'code' loops around the host system's input buffer waiting for a valid AiF start of menu response character. This is necessary to
discard any redundant input in the input buffer.

Once this is found, the menu option selected may be easily determined by extracting the menu number and the element number
from the next input. If the user has hit the ESCape key this is detected (menu_nbr = 0) and the process exits the loop. Otherwise the
menu option chosen is processed normally, as any application would do.

Notes:You should load pop-down menus into (and cleared from) specific menu slots, to avoid clashes with other application's AiF
menus - host applications will need to manage menu slot numbers to prevent conflicts.

You may wish to use the AiF sequence to push and pop complete "environments" before loading/reloading application specific menu
sets. This will ensure that there is no possibility of their menu sets clashing with another application. Please see Save Environment
for more information.

Cascading Pop-Down Menus

Cascading menus may be used to enhance existing Pop-Down menus by giving applications the ability to control and display a
menu tree structure. The use and operation of cascading menus is simply an extension to HOSTACCESS's existing Pop-Down
menus system.

See the topics listed below:

Resetting cascading menus.
 Loading cascading pop-down menus.
 Activating cascading menus.
 Getting a menu response.

Closing pop-down cascading menus.
Resetting cascading menus.

Resetting Cascading Menus

The following AiF sequence resets menu i.e. clears the menu set in the menu set number SN from the PC's memory.
ESC [= 2 ; SN l

Where:

SN Is the menu set number from 1 to 50.

This sequence need only be used if the application wishes to reload a completely new set of cascading menus into the same menu
set number.

Loading Cascading Pop-Down Menus

To load a cascading pop-down menu into HOSTACCESS's memory on the PC use the following sequence:
ESC _ N1 ; SN M H1 ; E1 ; E2 TC CN ; .. ; En ESC \

Where:

N1 Is the menu number from 1 to 100. Only menu numbers 1 to 8 may
be presented from the menu bar. The first element in these each of
these menus will be taken as the heading for that pop-down menu.

SN Is the Menu Set number from 1 to 50.

M Is the capital letter 'M' - AiF code for Menus.

H1 Is the first parameter and will be used as this Pop-Down Menu's
heading in the Menu Bar for menu numbers 1 to 8 only. For all other
menus, this is the first menu element.

E1..En Are the menu elements, up to 20 per Pop-Down Menu.

TC Is the cascade tag character indicating that if this element is
selected by the user a cascaded menu will be opened. The default
tag character is a split vertical bar (|).

CN Is the menu number of the cascaded menu. This menu should itself
be loaded with this menu number.

Note: menu heading and element text strings should not contain semi-colons (interpreted as element delimiters). Nor should they
contain control characters which will corrupt the menu text. Each menu may be loaded individually by addressing it by its menu
number. In other words, menus can be dynamically reconfigured to suit the application's requirements.

Click here for an example.

Example

Cascaded menus are "pointed to" within the text of any menu element by suffixing the text with a cascade tag character followed by
the number of the menu to be cascaded to. For example:

ESC _ 1 ; 1 M First Menu ; 1st Element ; 2nd Element | 16 ESC \

This AiF sequence will load a menu into HOSTACCESS as menu number 1 in menu set number 1 with a menu heading of "First
Menu" and with two menu elements "1st" and "2nd". The second element, when selected by the user, will cascade into menu
number 16 allowing the user to select a further menu element from this cascaded menu. Needless to say, menu elements in this
cascaded menu may themselves cascade into other menus, and so on.

Activating Cascading Menus

Use the following AiF sequence to activate the Pop-Down Menus for user interaction:
ESC [= 22 ; SN ; m ; e ; Y1 h

Where:

SN Is the menu set number.

m ; e Is the path to a top-level menu or the last selected menu
element.

Y1 Is the row number on which the menu bar will be displayed
(i.e. between 1 and the current screen depth). Defaults to 1.

This sequence will run the current menu set number SN starting at top-level menu 'm', element 'e'.

If the "m ; e" parameters are set to "0;0" then HOSTACCESS automatically activates the menu at the last 'remembered' menu
position and redisplays the menu set through to the last selected option (within cascades if appropriate). If these are set to "0;0" and
this is the first time the menu is invoked, then the option in menu 1, element 1 is highlighted when the menu is activated.

When the cascading menus are activated they appear over the existing screen. As the user moves through the menus,
HOSTACCESS refreshes the underlying screen instantaneously.

Getting a Menu Response

AiF Pop-Down Menus allow a user to move through them using the up, down, left and right arrow keys. The Home and End keys will
move the highlight bar to the top and bottom of a Pop-Down Menu list. To select a menu option, the user presses the Enter key
when the highlighted element is the required option. Pressing the ESCape key at any point allows the user to exit from the Pop-
Down Menus.

HOSTACCESS's AiF handles all of the menu movement and underlying screen refreshes without any intervention or additional code
on the host system. Once a user selects an option, AiF will send the full menu path for the selected menu number and the element
number to the host system. It is a simple matter for the host application to interrogate this response and determine which option the
user has chosen.

Menu response format.

Cascading Menu Response Format

The Cascading Menu response from AiF takes the format:
<STX> exit_key <CR> Mn,En .. Mn,En <CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value
002). This character indicates the start of the menu
response string and enables the application to discard any
typeahead input that could have been sent before the
response string itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker
format (as defined in DOS Keyboard Stacker- also see
Loading Exit Keys).

<CR> Is a carriage return (ASCII decimal value 013).

Mn Is the number of the option selected and is a single digit
number from 1 to 100.

En Is the menu element number of the option selected and is a
two digit number from 01 to 20.

The full menu path for cascaded menus is returned in the form of pairs of menu and element numbers. Each pair of numbers is
separated by a comma.

If the user hits the ESCape key while in the menus, the menu number and element number are both returned with a value of zero.

Closing Pop-Down Cascading Menus

Use the following sequences to close the Pop-Down Menu:
ESC [= 22 l

Closes the currently open Pop-Down Menu.

When the Pop-Down Menus are activated they appear over the existing screen. If another Pop-Down Menu had previously been
activated, it would have been closed by the activation of the current menu. In other words, there is no concept of a "stack" of open
Pop-Down Menus and applications should only need to issue one close menu command.

A close menu sequence must be sent to HOSTACCESS before the application can correctly update the underlying screen. If the
menu is not closed, the screen update may appear within the "window" opened for the currently active Pop-Down Menu's element
list.

Note: A simple form of horizontally scrolling menus may be simulated by using the row number in combination with menu number
1 to 8 without any pop-down menu elements.

Using Selection Boxes

Selection boxes provide another menu system within HOSTACCESSs AiF. They give applications the ability to present the user with
a scrolling window over a list of menu elements. The user may select any element within this list, as well as being able to rapidly
scroll or page up/down this list. A Selection Box may be "popped-up" at any screen position and may optionally appear over or
alongside other Selection Boxes or pop-down menus, open windows, and so on.

The AiF sequences that can be used to control Selection Boxes are detailed in the following topics.

Resetting selection boxes.
Loading selection boxes.
Activating selection boxes.
Getting a selection box response.
Closing selection boxes.

Resetting Selection Boxes

The following AiF sequence clears the Selection Box set number SN (1 to 50) from the PC's memory.
ESC [= 24 ; SN l

This sequence need only be used if the application wishes to reload a completely new Selection Box into the same selection box set
number.

Loading Selection Boxes

To load a Selection Box into HOSTACCESS's memory on the PC use the following sequence:
ESC_ SN ; Y1 ; X1 ; DT ; BT ; MT ; MW S H1 ; E1 ; E2..En ESC\

Where:

SN Is the selection box set number from 1 to 50.

Y1 Is the start row for display.

X1 Is the start column for display. If both X1 and Y1 are set to 0 (zero) then
the Selection Box is centered on the screen if no other Selection Box,
pop-down menu or window is open ; otherwise, the Selection Box is
positioned to the right of the menu or window.

DT Is the depth of the Pop-Up menu (number of rows in the box). Defaults
to the number of elements in the selection list, or 20 if there are more
than 20 elements.

BT Describes the box type:
0 : No border
1 : Single line border.
2 : Double line border.
3 : Single line at top and bottom, double at sides.
4 : Double line at top and bottom, single at sides.
32 : Do not clear screen behind menu box.
64: Shadow menu box.
128 : Explode menu box

The last three values for BT are additive, e.g. a single line bordered menu box that is exploded and shadowed has a BT value of
193 (1 + 64 + 128).

MT Describes the menu type as: normal (0) or Novell menu style (1)

MW Is the maximum width of the Selection Box. Defaults to the width of
the longest element.

S Is the letter 'S', AiF code for Pop-Up menu (Selection Box).

H1 Is the Selection Box heading. If no heading is required this should be
null.

E1..En Are menu elements, separated by semi-colons';'.

HOSTACCESS allocates up to 32K of PC memory for Selection Box elements within each menu set. If the average length of each
element were 40 characters, this memory could contain over 800 elements. Applications developers should be cautioned against
presenting the user with large numbers of elements. Users needing to select element 622 will not enjoy scrolling through the
preceding 621 elements nor waiting for this list to be sent to the PC over a communications link!

Activating Selection Boxes

There are two AiF sequences which can be used to activate Selection Boxes.

1. Use the following sequence to activate a Selection Box for user interaction
within a window automatically sized by AiF:
ESC [= 23 ; SN ; En h

Where:

SN Is the selection box set number.

En Is the start menu element number. If set to 0, the menu element
highlighted is that last selected by the user, or menu element
number 1 if this is the first time the Selection Box has been
activated.

This sequence tells AiF to size the width of the Selection Box automatically
based upon the longest menu element or using the DT and MW
parameters as specified in the selection box load sequence. The Selection
Box is cleared and the underlying screen instantaneously restored, once
the user has made a selection and exited the Selection Box.

2. To activate a Selection Box within a previously opened window use the
following sequence:
ESC [= 24 ; SN ; En h

Where:

SN, En are as defined above.

When using this sequence, it is the host application's responsibility to close
(and optionally clear) the window within which the Selection Box is
activated. This activation sequence is also useful when an application
needs to make a Selection Box appear on the screen within a window with
a heading and/or footing, and where the window is used to determine the
menu's width regardless of the maximum menu element width.

Getting a Selection Box Response

AiF Selection Boxes allow a user to scroll up and down the menu using the up and down arrow keys. The Home and End keys move
the highlight bar to the top and bottom of a Pop-Up Menu. To select a menu element, the user presses the Enter key (or a valid exit
key) when the element is highlighted. Pressing the ESCape key at any point allows the user to exit from the Selection Boxes.

Once a user makes a selection, AiF sends the selected Element number to the host system. It is a simple matter for the host
application to interrogate this response and determine which element the user has chosen.

The Selection Box response from AiF takes the format:
<STX> exit_key <CR> En <CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal
value 002).

exit_key Is the Exit Key mnemonic in the Keyboard Stacker
format defined in DOS Keyboard Stacker - also
see Loading Exit Keys.

<CR> Is a carriage return (ASCII decimal value 013).

En Is the number of the menu element selected.

If the user hits the ESCape key to exit from the selection box, the element number is returned with a value of zero.

Closing Selection Boxes

Use the following sequences to close the selection box:
ESC [= 23 l

When the selection boxes are activated they appear over the existing screen. If another selection box had previously been
activated, it would NOT have been closed by the activation of the current selection box.

In other words, there is the concept of a "stack" of open selection boxes and applications can have any number of selection boxes
displayed on the screen at any time. Obviously, applications should issue a close selection box command to close each of the
opened selection boxes.

Note      A close selection box sequence must be sent to HOSTACCESS before the application can correctly update the underlying
screens. If the selection box is not closed, the screen update may appear within the "window" opened for the currently active
selection box's element list. In addition, an open selection box must be closed before being re-loaded with a new list of elements.

Click here for an example.

Example

The following pseudo-code will open a Selection Box (in selection box set 1, after first clearing it) starting at column 10, row 5, 3
rows deep and return to the host the number of the element selected from a list of 6 choices. The Selection Box would also be
framed with a single line border, shadowed and have a heading of "Choose Option".

options_list = 'Choose Option;1st option;2nd Option;3rd Option;4th Option;5th Option;6th
Option'
send to PC ESC '[=24;1l'
send to PC ESC '_1;5;10;3;65;0S' options_list ESC '\'
send to PC ESC '[=23;1;1h'
loop until STX (ASCII dec 002) found in user_input do repeat
get menu_choice
if menu_choice equals 1 then
send to PC menu_choice 'st option selected'
if menu_choice equals 2 then
send to PC menu_choice 'nd option selected'
etc. to process each choice, as appropriate.

Please note that this is a simple example. No consideration has been given to loading and interrogating which Exit Key was used by
the user to exit the Selection Box, nor to colour configuration and so on.

Notes      Positioning of the Selection Box can be automatically adjusted to take into account an active Menu (either Pop-Down or
another Selection Box) by specifying special values for the Y1 and X1 parameters in the Load Selection Box AiF sequence. If these
parameters are set to 0 (zero), HOSTACCESS will attempt to "best" position the Selection Box to the currently selected option in the
active (last displayed) Menu.

If either of these parameters is 0 and there is no other menu active, positioning is centered on either the column or row (or both) in
the currently open Window (or screen).

Using this feature it is possible effectively to cascade Selection Boxes from Pop-Down menus.

Using Field Input

Processing user keyboard inputs can slow down host applications. This can be aggravated by the need for the host to echo each
key entered by the user, which can also strain the capacity of networks as each character is transmitted within its own "network
packet".

HOSTACCESSs AiF Field Input enables you to implement a fast, sophisticated field input system within applications - whilst still
being able to maintain complete control from the host application. Field input can be optimized to use the PC's processing power
with generally no more a couple of lines of code.

Three types of field inputs are supported by AiF:

Line input is the simplest field input type and works on the principle of "cutting" a specified number of characters out of the screen
from a specified cursor position.

Box input enables user inputs to take place within a fixed width single line box and for the box to be enhanced with box attributes
(such as frames, colour).

Window Editor gives applications the ability to define a variable width window over one or more input rows and for the window to
be enhanced with window attributes (frame, colour, titles). This effectively gives users an on-screen "mini" word processor.

Each of these types is described in the following topics.

Local processing of user's keyboard inputs may be controlled by host applications if they need a typeahead facility. Please see
Typeahead Mode for more details.

There are basically three AiF sequences that can control user's input from within a host application.

Each AiF sequence simply informs HOSTACCESS that the user is about to start input. At this point control is passed to
HOSTACCESS. The user then inputs one or more keystrokes and has access to all of the standard DOS-like facilities for amending,
inserting, deleting and moving through the input text.

When the user presses a valid exit key, the contents of the user's input are sent back to the host.

See also the following topics:

User keys available for field input.
 Field Input - Exit keys.

User Keys Available for Field Input

The keys available for the user to move around and modify input text are the same for all field input types. Users may move around
text by using the arrow keys. Overwrite mode is indicated by a solid (block) cursor. Insert mode is indicated by an underline cursor.
Pressing the Insert <INS> key will toggle between insert and overwrite modes.

The contents of the input field are always returned to the host application. It is the host application's responsibility to determine if the
field has been changed and how the user finished (exited) the field input. HOSTACCESS returns to the host the field's contents and
an exit key. If exit keys are loaded, you can use these to exit the field input and return to the application control.

Otherwise, the user may press the ESCape key to exit without changing the field's contents. In Line and Box input types, carriage
return or ESCape exits field input and sends the text to the host application. If the user is within the Window Editor field input type,
then pressing F1 exits field input and sends the text back to the host application.

If the user is within Line or Box input and starts to key input without moving along the text, then the text displayed is cleared and the
user's input completely replaces the old field. This facility is optional and may be controlled by the host application.

A number of local editing keys are also available for use while within field input. These may be Windows, WordStar or WordPerfect
compatible, depending upon which mode the user has configured via the Editing... option of the Configure menu.

Field Input - Exit Keys

All the AiF Field Inputs allow users to exit input by pressing a host application defined exit key.

If these exit keys are not defined, a user can indicate acceptance of the input by entering a carriage return (but note that within
Window Editor the F1 key is the default "acceptance" exit). The ESCape key may be pressed to exit and indicate non-acceptance of
the input. However, configurable exit keys give host applications immense flexibility in the way in which they handle user inputs.

For example, using defined exit keys it is possible for an application to provide a "help" hot-key (say Function Key 10) for any field
input anywhere in an application. The user is able to press F10 to ask the application to display help and then return immediately
to the field input to continue entering data.

In addition, exit keys can be also used by applications as "input field-wide" exits. For example, pressing F2 could always cause the
application to process the same event, regardless of where the user is within the current field input. This provides for very fast
maneuvering and selections of actions once the user is familiar with the exit keys defined by the application.

 Loading Exit keys.
Field input response.

Loading Exit Keys

Host applications may load application specific exit keys as required by using the AiF sequence below.
ESC _ Z exit_keys ESC \

Where:

Z Is the capital letter Z - AiF code for exit keys.

exit_keys Are the exit keys that the application will recognize when
returned from the AiF field input. These are as defined on DOS
Keyboard Stacker.

Field input response.

Field Input Response

The user's response is returned to the host application in the following format:
<STX> exit_key <CR> input_str <CR>

Where:

<STX> Is the special start of text character with ASCII decimal value
002.

exit_key Is a two character alphanumeric mnemonic for the exit key used
to leave the field input. The mnemonics returned are the same
as those used when loading the exit keys.

If you specify single characters as exit keys, these will be returned as two characters. For example, if 'X' is specified as an exit key, it
will returned as a space followed by the letter X (i.e. ' X').

<CR> Is a carriage return character with ASCII decimal value 013.

input_str Is the string as input by the user. Note that the response from
Window Editor is expanded to return each line of the window as
a separate input - please see Window Editor.

Example

To load HOSTACCESS with the exit keys required for Field Input so that only Carriage Return, ESCape and the Function Keys F1
and F2 are permitted, use the following AiF sequence:

ESC _Z F1 F2 ESC \

See also:

 Terminal Echo.

Terminal Echo

You should turn terminal echo off before getting the response from AiF Field Input, so that this is not displayed on the user's screen.
You can use an AiF sequence to suppress host echoed output, instead of the host system's equivalent command. For more details
on this please see Host Echo On/Off. Terminal echo should be turned back on once the menu response has been input.

Exit keys are common between the AiF Menus, Field Inputs and responses from Image displays - it is the application's responsibility
to maintain different exit keys between menus, field inputs and Image displays, if required.

Line Input

This sequence enables host applications to define a fixed length field on part or all of one row on the screen for user input. Any text
already on the screen within that field will be taken as the initial input text by the user. The user can modify this text before sending it
to the host application.

ESC [= 25 ; FL ; VL ; SM h

Activates line input at the current cursor position.

Where:

FL Is the integer field length (as a number of columns on the
screen) from which to "cut" text from the screen. It also defines
the maximum number of characters that may be input.

VL Is the validation parameter as any one of the following:

0 No validation (any input accepted).

1 Integer input only.

2 Numeric input only.

3 Alphabetic input only.

4 Alphanumeric input.

5 Hex input.

6 Hidden input (input is echoed as # characters: useful for
entering passwords).

SM Is the start mode code for the action to be if the first user input
character is not an editing action, i.e. is a character to enter into
the field. This parameter should be assigned as:

0 No special action for first user input.

1 If the first user input character is not an editing character,
clear the field first.

The application must place the cursor at the (column, row) position from which input is to take place immediately BEFORE sending
this AiF sequence.

Applications tend to use the same start column for multiple fields, to display the contents of the fields and then allow the user to
modify a field by skipping up and down lines.

As each field is input the application redisplays the contents, permits the user to input new text and then displays the new field
again.

With this AiF sequence, there is no need to do this. The application displays the field contents, places the cursor at the start of the
field and switches AiF line input on. Redisplay of the field's text is unnecessary as the text the user sees on the screen is what has
been sent to the host application.

Note: Trailing spaces are trimmed from the input before being sent back to the host application.

Getting a Line Input response

Line input responses from AiF take the format:
<STX> exit_key <CR> input_str <CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value
002).

This character indicates the start of the field input
response string and enables the application to discard
any typeahead input that could have been sent before
the response string itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker
format (as defined on DOS Keyboard Stacker - also see
Loading Exit Keys).

<CR> Is a carriage return (ASCII decimal value 013).

input_str Is the text as input by the user.

Box Input

Box Input enables host applications to pop up an Input Box anywhere on the screen and request user input. This input may be
optionally validated within the PC before being sent back to the host. Validation can be specified to optionally restrict the user's input
to numeric only, alphanumeric, hidden (for passwords) and so on.

User input is NOT constrained to the box's width. Text input may exceed the width of the box and AiF will indicate that additional text
exists by displaying appropriate arrow symbols. The maximum length for the text that can be input should be specified by the host
application.

The Input Box itself may be enhanced with selected frame styles and/or title. Once the user has completed input, the box may
optionally disappear and the underlying screen be immediately restored.

Box input provides an especially elegant adjunct to handling user input from AiF pop-up and pop-down menus. HOSTACCESS
users will probably already be familiar with the Box Input style as it is used within HOSTACCESSs own configuration menus.

The following AiF sequence enables you to define an input box.
ESC _ Y1 ; X1 ; FL ; BS ; BT ; VL ; SM J text ; title ESC \

Where:

Y1 Is the top left-hand row.

X1 Is the top left-hand column.

Setting X1 and Y1 to 1 displays a box starting at the top left-hand
corner of the screen. Setting X1 and Y1 to 0 displays a box starting at
the current cursor position (or currently selected menu element).

FL Is the maximum field input length.

BS Is the width of box. This may be less than the field input length. If zero,
the maximum field input length is used.

BT Describes the box type:
0 No frame.
1 Single line frame.
2 Double line frame.
3 Single line at top and bottom, double at sides.
4 Double line at top and bottom, single at sides.
64 Shadow window

128 Explode window

The last two values for BT are additive, e.g. a single line framed box
that is exploded and shadowed has a BT value of 193 (1 + 64 + 128).

VL Is the validation parameter as any one of the following:
0 No validation (any input accepted).
1 Integer input only.
2 Numeric input only.
3 Alphabetic input only.
4 Alphanumeric input.
5 Hex input.
6 Hidden input (input is echoed as # characters: useful for

entering passwords).
SM Is the start mode code for the action to be if the first user input

character is not an editing action, i.e. is a character to enter into the
field. This parameter should be assigned as:
0 No special action for first user input.

1 If the first user input character is not an editing character, clear
the field first.

J Is the capital letter 'J': AiF code for Input.

text Is the input text to be displayed when the Input Box is activated and
modified by the user (may be null).

title Is the heading text for the Input Box (may be null). If a box type of 0
(no frame) is used, the title is discarded.

 Getting a box input response.
 Box input response examples.

Getting a Box Input Response

Box input responses from AiF take the format:
<STX> exit_key <CR> input_str <CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value 002).

This character indicates the start of the field input response string
and enables the application to discard any typeahead input that
could have been sent before the response string itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker format (as
defined on DOS Keyboard Stacker - also see Loading Exit Keys).

<CR> Is a carriage return (ASCII decimal value 013).

input_str Is the text as input by the user.

Once the user has exited from the Input Box this box is automatically cleared from the screen and the underlying screen restored
immediately.

Click here for an example.

Box Input Response Examples

1. To pop-up an Input Box on row 12, column 15 of the screen to prompt the
user to enter a 50-character, alphabetic-only surname within a box 25
characters wide, an application should use the following AiF sequences:

send to PC 'ESC[=12;15;25;50;1;3;0;J;Enter Surname ESC \'

The above Input Box has a single line frame with a heading of "Enter
Surname". The maximum input length is 50 characters within a box width of
25. Also note that the box will be cleared from the screen when the user's
input is complete.

To prompt the user with an existing surname, say "Harvey" (that can be
accepted or amended by the user), simply use the sequence below:

send to PC 'ESC[=12;15;25;50;1;3;0;JHarvey;Enter Surname ESC \'

2. To prompt the user for the same surname after, say, a pop-down menu or
Selection Box option "change surname" has been selected, use the sequence
below:

send to PC 'ESC[=0;0;25;50;1;3;0;JHarvey;Enter Surname ESC\'

Note: both the Y and X coordinates of the box have been set to 0 (zero). This means that HOSTACCESS will position the box at the
current cursor coordinates. Where this is done from an AiF menu, the current cursor position is taken as being one row below the
highlighted element with the start column at the centre of the element. This positioning occurs automatically but may be constrained
by factors such as the width of the input box and proximity to the edges of the screen.

Trailing spaces are trimmed from the input before being sent back to the host application. Box input limits the entry to just one line
on the screen. Applications requiring multiple lines of input should user the Window Editor AiF sequence described in Window
Editor

Window Editor

The AiF Window Editor enables host applications to pop up an input window (of one or more lines) anywhere on the screen and
request user input. The user may maneuver around the text within the window using all of the available PC based keys to insert,
delete and add text.

User input is constrained by the window's width and depth.

The input window itself may be enhanced with selected frame styles and/or titles in accordance with AiF Windows. In other words,
the host application should normally open an AiF window before activating the Window Editor. Likewise, once the user has
completed input, an AiF sequence should be used to close and optionally clear the input window.

The Window Editor is particularly suited to applications that need to capture user notes. It, in effect, acts as a very fast local word
processor with the major benefit that the user's notes are only sent to the host once the user is satisfied with the text that has been
entered. This has considerable performance advantages for applications running over networks or asynchronous lines.

ESC [= 26 h

Switches the window editor on, using the text in the currently open window.

See the topics listed below:

 Getting a Window Editor Response.
 Examples.

Getting A Window Editor Response

Window Editor responses from AiF take the format:
<STX> exit_key <CR> inp_str1 <CR> .. inp_str NN <CR><STX><CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal
value 002).

This character indicates the start of the field input
response string and enables the application to discard
any typeahead input that could have been sent before
the response string itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker
format (as defined on DOS Keyboard Stacker - also
see Loading Exit Keys).

<CR> Is a carriage return (ASCII decimal value 013).

inp_str1 .. inp_str
NN

Is the text input by the user for each line within the
input window, where NN is the number of lines in the
window.

It is important to note that the response from Window Editor is terminated with another STX character. The advantage of this is that
null trailing lines are not returned to the host. Applications should therefore always check for the trailing STX character and use this
to identify the end of the user inputs.

Click here for an example.

Window editor examples

To pop-up an input window on row 18, column 10 of the screen to prompt the user to enter up to 4 lines of input text with each line
not exceeding 35 characters, an application should use the following AiF sequences:

Open window and add title first:
send to PC 'ESC[=18;10;21;44;193;0;1;33;41u'
send to PC 'ESC_WInput text WindowESC\'

Activate Window Editor:
send to PC 'ESC[=26h'

Look for the start of text delimiter indicating user has finished input:
loop

get user_response
until 1st character of user_response eq ASCII 002
repeat

The exit key should be interrogated at this point:
exit_key = 2nd character onwards of user_response

Now get the user text from the input window (input this into an array called user_text):
ctr = 1
loop

get user_response
until user response eq ASCII 002

user_text(ctr) = user_response
ctr = ctr + 1

do repeat
Finally, close the window leaving it visible on the screen:

send to PC 'ESC[=1v'
Notes Trailing spaces are trimmed from the input before being sent back to the host application.

If exit keys have not been loaded (see the earlier section on loading AiF Exit Keys) then the ESCape key and the Function key F1
are available as exit keys by default.

Save Environment

Host application programs that have been designed to interface with other (possibly unknown) applications which might also be
using AiF facilities may experience "conflicts of AiF interest" with the other applications, such as loading AiF menus into the same
Menu Set number, changing but not resetting screen colours and so on.

These conflicts may be avoided by ensuring that applications "save" their AiF environment at an appropriate point by using the AiF
sequence in the following sections.

Push environment
ESC [= 99 p

Pop environment
ESC [= 99 q

Push environment will essentially save everything except backpages for the currently active session including:

· The current screen.

· The screen mode (row & column settings).

· AiF windows.

· Screen attributes.

· AiF stacks and slots, menus and selection boxes.

· The screen's background fill character and attribute.

Session dependent attributes saved include:

· Cap lock and num lock status.

· Mouse status.

· Function keys, AiF exit keys and key changes.

· Current emulation in use.

Click here for an example.

Application Environment Examples

Applications providing gateways out to other applications that might themselves make use of AiF should save their own
environments before shelling out to the gateway. Obviously, the application would want to restore its original environment once
control has been returned from the gateway.

Notes You should ensure that the environment’s saved stack is popped in the correct order to properly restore environments for
earlier programs. Saving environments can consume sizable chunks of the PC's memory depending upon the number and size of
menu and selection box sets loaded, the number of screens pushed on to the screen slots stack, and so on.

Display Optimization

Users are highly sensitive to the time an application takes to paint the screen. If the user is using a dial-up link or a network, it can
take several seconds to paint a complex screen. These types of delays are often more critical when a user is stepping through
applications screens than when waiting for a response to a complex transaction.

HOSTACCESS's Display Optimization features address this problem by providing programmable facilities to dramatically speed up
screen updating.

The following topics how host applications can make use of the AiF features called SLOTs, FORMs and FREEZE ON/OFF. All of
these features have been designed to minimize the time, or perception of the time, taken to display host application screens. In
many cases, this time can be reduced by more than a hundred-fold.

 SLOTs make use of the PC's memory to save and restore screen images - this is the fastest method of redisplaying an application
screen. Screen images may be pushed on to a stack in the PC's memory and popped off the stack as required by the application.
Screen display times are virtually instantaneous - the user no longer needs to wait for 2 or more seconds while the host system
sends 2,000 or more bytes to redisplay the screen.

 FORMs is another means of saving and restoring screen images and display text which are stored on the PC's disk drive instead of
within memory.

FREEZE ON/OFF is a very clever technique for improving the user's perception of screen display times. If an application turns
FREEZE ON, builds the screen (this is done in the memory of the PC and is not visible to the user) and then turns FREEZE OFF,
the effect is one of instant screen display.

SLOTs

AiF SLOTs provide the facility to store any screen image into the memory of the PC. You can address these images as 'SLOTs'
numbered from 1 to 50 or you can push and pop images from a SLOT STACK. When restored to the screen, the image will appear
before the user literally instantly.

Using the SLOTs feature, you can add a major enhancement to your application in minutes. This is, the ability to call any other
application from anywhere within any application. By telling HOSTACCESS to save the current screen image to a SLOT, your
application can go off and execute other programs. Upon returning to your application, you simply request HOSTACCESS to
redisplay your screen image from that SLOT, instantly.

ESC [= N p Save the current screen image to slot number N.

ESC [= N q Restore slot N to the screen.

Where:

N Is a SLOT number from 1 to 50.

ESC [= p Push the current screen image on to slot stack.

ESC [= q Pop screen image from slot stack.

Note: the AiF Sequences ESC [= 99 p and ESC [= 99 q are used by the PUSH/POP environment.

Click here for some SLOTs examples.

SLOTs Examples

1
.

At any input point the application should allow the user to invoke
another application and then, on quitting that application, return to
the original with the screen exactly as the user left it (including
cursor position, colour attributes, etc.). Using AiF's SLOT feature, the
Host application can issue the following AiF sequences:

if input is 'run another application' then
PUSH SLOT send to PC 'ESC[=p'

run 'another application'
return from other application

POP SLOT send to PC 'ESC[=q'
end if

This 'code' pushes the current screen image into the SLOT STACK
and pops it back as soon as the user returns from the other
application.

The screen image will be restored instantly, with all of the screen
attributes, colours and cursor position set exactly as the user left
them.

Using Push and Pop SLOTs applications can call other applications
indefinitely with each application pushing and popping its own
screen images without conflict with previous applications.

2 An application frequently makes use of a data entry screen. Rather
than sending this screen to the PC each time it is required, the
application could save it in a numbered SLOT at the start of the
application.

screen_nbr = 1
send to PC data_entry_screen
send to PC 'ESC[=' screen_nbr 'p'

When the data entry screen is next required, the application only
needs to send 'ESC[=' screen_nbr 'q' to instantly redisplay this same
screen. The screen image will remain in the SLOT 99for the entire
HOSTACCESS session, until overwritten by another screen or until
the SLOTs are cleared.

The SLOT STACK Facility

If there is a risk of applications clashes when using the numbered SLOTs, developers are recommended to make use of the SLOT
STACK facility. As users move between applications (or areas within an application) and the application knows that the user will
return to the previous screen, it is simpler to push and pop the required screen images from a SLOT STACK.

Each SLOT (screen image copy) requires approximately 4K of the PCs memory. There is no limit to the number of screens that
may be pushed into a SLOT STACK other than the size of available memory in the PC. In practice, applications that push screens
down more than six levels will tend to lose the user (user's memory's are limited too!).

Push Slot will save the following screen related information together with a copy of the screen image:

· Cursor position.

· cursor status (shape, on/off).

· Screen attributes (colour, flashing, etc.).

· Background fill character and attributes (as used for clears, clear screen, end of line, etc.).

· Wrap and field modes.

Note: If your application needs to save more than the current screen and related information, see Save Environment.

FORMs

HOSTACCESS enables you to store any host output on the PC's Floppy or Hard Disk. This output can be a whole screen, partial
screen, AiF menus or selection boxes, or anything that you might output frequently. The output is stored in any specified form
numbered from 1 to 255. Requesting HOSTACCESS to display a form results in the output being processed at high speed. Whether
the user is running at 1200 or 19200 baud, forms will always appear at the same fast speed.

Note: Characters with an ASCII value greater than 127 can be stored in forms, thereby accommodating special characters required
for some languages, such as French.

Use the the following sequence to write to FORM file:
ESC [= Fn ; Fv ;1 s TEXT ESC [= s

Use the the following sequence to process from FORM file:
ESC [= Fn r

Where:

Fn Is the Form Number as an integer from 1 to 255.

Fv Is the Form Version as an integer from 1 to 255. The ';1' is
mandatory

s Is the lowercase letter s - AiF code for FORMs

TEXT Is the host output to be processed (and usually displayed on
the screen). This may contain any valid screen display
sequence (for example, cursor addressing, attribute setting)
including other AiF sequences (such as FREEZE ON/OFF,
load AiF Selection Box, etc.)

Note: This AiF sequence is terminated by the ESC [= s sequence and not the standard AiF terminator. This is because other AiF
sequences can be stored within a form.

 FORM files.
Examples.
Notes on FORM files.

FORM files

The default DOS file where FORMs are saved to and restored from is called HOST.FRM in the directory in which HOSTACCESS is
running.

To specify an alternative FORM file, use the following sequence:
ESC _ F DOS_form_file_name ESC \

This DOS_form_file_name may include a full DOS pathname.

To clear the currently active FORM file of FORMs use the following sequence:
ESC [= s

When a Form is created, it is given a version number of 1. Each time a Form is updated, this version number is incremented by 1.

To request the version number from a FORM file, use the following AiF sequence:
ESC [= Fr ; 1 r

requests version number for FORM number Fn.

This will return to the host the following response:
<STX> <CR> Fn <CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value 002).

<CR> Is carriage return (ASCII decimal value 013).

Fn Is the FORM version number as an integer between 1 and
255. If a version number of 0 (zero) is returned, this indicates
that the last specified Form Number does NOT exist.

Examples.
Notes on FORM files.

FORMs Examples

Applications tend to build screen images by combining a number of variables into one and then displaying this consolidated variable.
To save whole or part of any variable that is to be displayed, host applications simply need to insert this variable into an AiF
sequence to save a FORM.

For example, to save and restore a three line portion of a screen display into and from the FORM numbered 22 in the FORM file
HELPTEXT.FRM (in the HOSTACCESS directory), use the following code:

Assign FORM file with
send to PC 'ESC_F' : 'HELPTEXT.FRM' : 'ESC \ '

Build Screen Display item
screen = time : date : screen.heading
screen = screen : column1,row1 'line 1'
screen = screen : column2,row2 'line 2'

Now save this to PC's disk with
send to PC 'ESC[=22;1;1s' : screen : 'ESC[=s'

At any point within the application, the screen can be redisplayed from the PC's FORM file as follows:
send to PC 'ESC[=22r'

Notes on FORM files.

Notes on FORM files

Imagine storing your applications screen images in different files on the PC in different languages.

FORMs are actually held in a format that when restored, is replayed through HOSTACCESS as if the characters were being sent
from the host application to HOSTACCESS. Because this FORM information is coming from the PC's disk, it is faster than having to
send the same screen information from the host system. However, this does mean that FORMs do need to be compatible with the
Terminal Type currently being emulated by HOSTACCESS. In other words, if an application is running in VT100 emulation mode
through HOSTACCESS, any FORMs that are to be displayed must have previously been saved in VT100 emulation mode.

The number of FORM files is only limited by the available disk space on the PC. There is no limit to the number of FORM files that
may be addressed by AiF FORM sequences.

It is important to realize that FORM files may contain any AiF sequence. This enables applications to store complete Selection
boxes and/or Pop-Down Menu structures/selection lists on the PC's hard disk with obvious performance advantages when it comes
to loading the menus. Diskless workstations would simply load such FORM files from the network fileserver's hard disk (say, from
the same DOS directory from which HOSTACCESS was invoked). In this environment, the host application must also manage the
FORM files and their version numbers to ensure that they are present and that they contain the correct menu structures/selection
lists. An AiF sequence is also provided to verify the existence of DOS files.

If you try to read a FORM that does not exist, HOSTACCESS just ignores the request. If a FORM already exists, a write FORM
sequence will overwrite it. The maximum size of a FORM is currently 32K, the maximum size of a form file is 64K. If you attempt to
write a FORM greater than this size, it will be truncated, resulting in a corrupt screen when displayed.

If your screen is corrupted when you display a FORM, check that you had some form of flow control set when you loaded the form.
If, for some reason, you are unable to use flow control, ensure that there is a delay in your program after sending each FORM to
give HOSTACCESS time to write the FORM to disk.

Freeze On/Off

This simple but effective feature available under HOSTACCESS gives end users the appearance that their host machine's
performance has been significantly improved.

It enables host applications to temporarily suppress screen output from HOSTACCESS whilst building a new screen in the PC's
memory and then to instantly release this screen output into view.

Use the following AiF sequences:
ESC [= 1 h Will FREEZE the screen.

ESC [= 1 l Will display data sent during FREEZE.

Currently, most applications display information on a data entry screen one field at a time. If the host system is slow, the user can
actually see each field being displayed, in bursts on the screen.

Imagine being able to see all of this data appearing instantly on the screen. That is exactly what HOSTACCESS's freeze on and
freeze off facility provides. Before sending the first field, you turn freeze on, all subsequent data sent to the screen is not actually
displayed.

After the last field has been output, you turn freeze off. This makes all the changes appear instantly on the screen. This technique
can be used when clearing fields, printing boxes, drawing logos etc.

 Notes on Freeze On/Off.

Notes on Freeze On/Off

When you send the freeze sequence to HOSTACCESS, a flag is set telling HOSTACCESS not to update the PC screen until the
unfreeze code is received. Any data received from the host after the freeze command is processed, will update the screen image
and back pages in memory but the physical screen is not changed. When the unfreeze command is received and the screen image
in memory is used to update the real screen, this will happen instantly.

When used with HOSTACCESS SLOTs, it can provide the application developer with the facilities of a multi-page terminal. The
second page can be placed in a numbered HOSTACCESS slot. It is updated by freezing the screen, pushing the current screen on
to the SLOT STACK, pulling the second page on to the screen, updating it, putting back into its numbered SLOT, popping the
original screen from the SLOT STACK and unfreezing the screen. Yes, that does sound like a lot of processing but HOSTACCESS is
so fast at moving screens between SLOTs and the number of characters that have to be sent to achieve the above listed functions is
so small that this approach is very practical and very quick.

The use of freeze on/off is often governed by subjective assessments of how the application screens should be presented to users.

One simple means of implementing this feature is to adopt the philosophy that the application should turn freeze on immediately
AFTER each user input and turn freeze off just BEFORE each user input. This tends to make all screen output appear as if it is all
instant. But, this can also mean that on very slow host systems or when the user is accessing the system through a very slow link
(say at 2400 baud), the application may leave the user with a 'frozen' (blank or unchanging) screen while HOSTACCESS is waiting
for the screen data and then the freeze off sequence to be sent down the line.

Many applications have catered for this type of 'speed problem' by displaying a standard message such as 'Now processing ...
please wait' whenever the user selects an option and the screen subsequently needs to be changed. Of course, with
HOSTACCESS's AiF you could now show that message in a shadowed coloured box!

As an aid to developers implementing this freeze feature, we have added a special hot-key ALT/U which will immediately unfreeze
the current screen image. This can be very useful when your program forgets to send the unfreeze sequence and you have spent a
few seconds watching a blank PC screen and wondering just what your wonderful new release of software is doing!

Host Echo On/Off

It is useful on occasions to be able to suppress the host system's echoed output. An AiF sequence is available for this.
ESC [= 13 h Will enable host echo output to the screen.

ESC [= 13 l Will discard host echo output to the screen.

This will discard any text or cursor movement output from the host. It does not suppress host output to the system message line.

Examples

This AiF sequence may be used to replace the host ECHO ON/OFF, HUSH ON/OFF commands. Where these are not known (or are
different for different host systems), this AiF sequence gives applications a consistent method of suppressing and enabling screen
output.

Notes: Remember to enable host echo after suppressing it if you want your users to see anything on the screen.

This sequence will not suppress any other AiF sequences output by the host, i.e. AiF sequences to open windows, update the
system message line, etc. will still be carried out.

This is not the same as turning the host's echo off since characters are still echoed from the host to HOSTACCESS.

Applications Enhancement

Any application is used and viewed by the user through the screens that the application displays. So applications should have
'functional attractiveness'.

Application screens should display screen information as concisely as possible and attract the user's attention to the correct part of
the screen, as required.

This section shows how to improve screens, using Box and Line drawing.

Advantages to Developers

Because all of HOSTACCESS's AiF features are actually processed within HOSTACCESS on the PC, developers using these
features will gain substantial benefits in the following areas:

· Reduced I/O burden on host system.

· Minimal host applications code required to achieve sophisticated screen displays (with consequent reductions in software
maintenance).

· Fast implementation of the AiF features within existing and new host applications.

· Easy to code and easy to support other (dumb) terminals within the same application.

Box drawing.
Line Drawing.

Box Drawing

Using AiF's Box Drawing feature, application screens can be very effectively enhanced by combining boxes and colour. AiF Box
Drawing sequences are typically less than 18 bytes long - compare that with the number of characters conventionally required to
draw boxes on host application screens! Boxes may be optionally framed, shadowed and/or exploded.

Use the following sequence to draw a box:
ESC [= Y1 ; X1 ; Y2 ; X2 ; BT ; A1 ; ... ; An x

Where:

Y1 Is the top left-hand row.

X1 Is the top left-hand column.

Y2 Is the bottom right-hand row.

X2 Is the bottom right-hand column.

Setting X1 and Y1 to 1 will display a box starting at the top left-
hand corner of the screen.

If the X1 and Y1 parameters are set to 0, the box will be
centered within the currently active window (or screen, if no
window active). The box's dimensions are then determined by
the absolute values of X2 and Y2.

BT Describes the box type:

0 No frame.

1 Single line frame.

2 Double line frame.

3 Single line at top and bottom, double at sides.

4 Double line at top and bottom, single at sides.

64 Shadow window

128 Explode window.

The last two values for BT are additive, e.g. a single line framed
box that is exploded and shadowed has a BT value of 193 (1
64 128).

A1 -
An

are optional parameters to set the colour of the box. If not
present, the current attribute is used.

Click here for an example.

Box Drawing Application Examples

To draw an unframed exploding box of dimensions 3,3 to 10,40 with a background colour of Cyan and a foreground colour of Yellow,
use the following sequence:

ESC [= 3;3;10;40;128;0;1;33;46x

Where:

3;3;10;40 Are the box coordinates.

128; Is the box type of exploding unframed.

0;1;33;46 Are the parameters to assign colours (note the 1;
is used to set the high intensity bit so that Yellow
is generated by an attribute setting of 33, not
Brown).

Notes    The frame is drawn round a box of the requested dimensions, i.e. area of the screen covered by the framed box is larger
than the requested dimensions. The box is drawn in the requested colour or, if no colour is specified, the current screen colour
attributes are used.

AiF windows are similar to boxes and should be used if the host application needs the ability to restrict further output to within the
dimensions of the Window (box), without effecting the underlying screen. AiF box drawing always updates the underlying screen and
will clear the area "under" the box. To add a frame effect around an area of the screen, without clearing this area, you can use either
an AiF window (with the no clear on open option) or the AiF line drawing sequence (with the line coordinates set to those normally
used for a box).

Line Drawing

Many terminal protocols support line drawing characters. However, just drawing a line across the screen involves sending 80 or so
characters to the terminal. To draw a complex form would involve several lines of code (especially if trying to cope with merging
lines) and possibly thousands of characters being sent to the screen.

AiF's enhanced line drawing commands enable you to draw complex lines and frames with very simple commands that involve
sending only a few characters from the host application program. Lines can be specified as single or double and HOSTACCESS will
intelligently merge new lines with any existing lines on the screen, if requested.

Use the following sequence to draw a line:
ESC [= Y1 ; X1 ; Y2 ; X2 ; LT ; A1 ; ... ; An z

Where:

Y1 Is the top left-hand row.

X1 Is the top left-hand column.

Y2 Is the bottom right-hand row.

X2 Is the bottom right-hand column.

Setting X1 and Y1 to 1 will draw a line starting at the top left-
hand corner of the screen.

If either pair of X1,,X2 or Y1,Y2 parameters are set to 0, the line
will be expanded to the full width of the currently active window
(or screen, if no window active).

To draw horizontal lines make Y1 equal to Y2.

To draw vertical lines make X1 equal to X2.

LT Describes the line type:

0 Single line.

1 Double line.

2 Single line with merging.

3 Double line with merging.

The merging option requests AiF to intelligently merge the line or frame with any other line characters it meets or crosses, i.e.
adding the appropriate 'T's, crosses, etc.

A1 - An Are optional parameters to set the colour of the line. If not
present, the current attribute is used.

Click here for an example.

Line Drawing Application Examples

To draw a double line frame of dimensions 3,3 to 10,40 in Yellow on a Black background, use the following sequence:
ESC[=3;3;10;40;1;0;33;1;40z

Where:

3;3;10;40 Are the box coordinates.

1; Is the draw double line option.

0;33;1;40 Are the parameters to set the colour
attributes.

To draw a horizontal line from 5,3 to 5,40 (i.e. on row 5 from column 3 to 40), merge with any existing lines on the screen and use
the current screen colours, use the following sequence:

ESC[=5;3;5;40;2z

To draw a horizontal line the full width of the screen (or currently open window) on row 11, use the following AiF sequence:
ESC[=11;0;11;0z

Note      If the line coordinate parameter X1 is not equal to X2 and/or Y1 is not equal to Y2, a 'frame' will be drawn. There are certain
advantages to using this method of drawing frames as opposed to using the AiF Box Drawing sequence. Firstly, the area embraced
by a line drawn 'box' will be left intact (not cleared as in box drawing). Secondly, the borders of this line drawn box may be
intelligently merged with other lines on the screen.

System Message Line (Line 25)

Most terminal emulations provide a system message line and HOSTACCESS's emulations will support these. For those that do not
support this feature, for example VT100, there is an AiF sequence to provide this facility.

ESC [= Cl ; A1 ; ... ; An w message CR

Where:

Cl Is the starting column number.

If Cl is absent or zero, the system message line is
cleared and the column set to 1. Otherwise the
line is left unchanged and the column set as
specified. Characters are displayed until a
carriage return is received or until the last column
has been written to.

A1 .. An Are parameter settings to change the colour
attributes on the System Message line. If not
specified, then the current screen colours are
used.

message Is the text required on the System Message Line.

CR Is carriage return to terminate output to the
System Message Line.

Application examples.
System Message Line Control.

System Message Line Application Examples

To display the message MAIL WAITING in White text on a Cyan background at column 20 on the System Message Line, use the
following sequence:

ESC[=20;0;1;37;46wMail WaitingCR

The colour parameters are 0;1;37;46, and w is the AiF code for the System Message Line sequence.

To clear the System Message Line, use:
ESC [= w CR

Notes      While in System Message Line mode, message text can only consist of standard displayable characters. Non-displayable
codes will terminate the System Message Line.

If the HOSTACCESS status line is being displayed, it is switched off. The System Message Line is held in memory and redisplayed
when the status line is switched off, i.e. the user may toggle between the status line and the System message line.

Application control of the system message line display is now available through an additional AiF sequence documented in the
following section. This enables applications to restore the status line without the need for the user to redisplay the status line (via the
Configure menu).

System Message Line Control

Full control of the System Message Line display can now be achieved by host applications using the AiF sequences below.

HOSTACCESS's own status line can readily be restored as required by applications after they have used the System Message Line
for their own messages (by using the AiF sequence described in the previous section).

ESC [= 11 h Forces the display of the current (application) System
Message Line.

 ESC [= 11 l Forces the display of the HOSTACCESS Status Line, if this
was enabled when HOSTACCESS was loaded.

Click here for an example.

System Message Line Control Examples

An application will often use the System message line to display its own status information. On exit, it can now restore the user's
HOSTACCESS Status Line display (on the same line as the System Message Line).

display System Message Line
send to PC 'ESC[=0w ..job UPDATE.BALANCES
started at 12:22:15 ..'

on exit from the program, restore the HOSTACCESS Status line
send to PC 'ESC[=11l'

Note      If HOSTACCESS's Status Line Display has been disabled through HOSTACCESS's configuration menus, it will not be
possible to redisplay it with AiF sequences.

Screen Modes, Including 132 Column Support

Host applications may switch the screen in to and out of these screen modes as required by using the AiF sequences below.
ESC [= 3 ; n h turns specified screen mode on.

Where:

n Is the screen mode value as defined below:

Mode Rows x
Cols

Monitor/Card

0 132 x 24 VGA cards only

1 80 x 24 (All cards)

2 80 x 42 (EGA cards only)

3 80 x 49 (VGA cards only)

5 132 x 25 (VGA cards only)

6 80 x 25 (VGA cards only)

7 80 x 43 (EGA cards only)

8 80 x 50 (VGA cards only)

9 40 x 24 (All cards)

10 40 x 25 (All cards)

Click here for an example.

Screen Modes Examples

A user wants to view a report before printing it. The host application can set the screen to 132 columns as follows:
set host terminal width to 25 rows by 132 columns
send to PC 'ESC[=3;5h'

display and page through report
send to PC 'ESC[=3l'
set host terminal width back to 25 rows by 80 columns

Note 1  If mode parameter is null, it will have the same effect as setting mode to 1.
ESC [= 3 l returns screen mode to the settings as configured by the user.

Host applications should first ensure that the user's PC can support the required mode. Invalid modes will be ignored by
HOSTACCESS.

Note 2 HOSTACCESS supports a variety of screen modes with the appropriate card and monitor. However, users should be
aware that not all card and monitor configurations can support all of the modes shown above.

Note 3 The PC must be capable of supporting the desired screen modes. The VGA type will need to have been configured to the
correct VGA BIOS type (within HOSTACCESS's configuration menus) before trying to switch into 132 column screen mode.

Note 4 When you change screen modes, you reset a number of session parameters including closing any open AiF windows, AiF
menus and clearing screen backpages, slots, etc. If your application needs to preserve the current environment before changing
screen modes, use the "save environment" AiF sequence, as described in Save Environment

Changing Cursor Shape

Host applications may change the cursor shape from a line in to a block and vice versa by using the AiF sequences below.

ESC [= 4 h Selects BLOCK cursor.

ESC [= 4 l Selects UNDERLINE cursor.

This simple sequence can be useful when writing routines that toggle between different input modes depending upon what the user
is currently doing. For example, many DOS products will use a block cursor if the user is in Overwrite mode, or an underline cursor,
if the user is in Insert mode. This sequence can be used to emulate this requirement within host applications.

Note:Some of HOSTACCESS's terminal emulations (such as Wyse 60) already support this facility. However, the above AiF
sequence makes this feature available in all of HOSTACCESS's emulations.

Switching cursor on/off.
Changing the screen fill character.

Switching Cursor On/Off

Host applications may switch the cursor on or off as required by using the AiF sequences below.
ESC [= 10 h switches cursor ON.

ESC [= 10 l switches cursor OFF.

This simple sequence is useful when writing routines that need to hide the cursor for some reason or another. For example, when
displaying error messages within a window it is nice to suppress the cursor and print a 'press any key' message in the window's
footing.

Changing the Screen Fill Character

The space character is normally used for clear screen, clear line and new window operations. This space character can now be
replaced with any character in the standard IBM PC character set.

Host applications may change the fill character as required by using the AiF sequences below.

ESC [= 12 ; nnn h Sets the fill character.

Where:

nnn Is the decimal value for the required IBM
PC character.

ESC [= 12 l Resets the fill character to a space.

Click here for an example.

Screen Fill Character Examples

Visually attractive backgrounds to screens and windows can be created with this AiF sequence. For example, to fill a screen with
musical notes as the background, use the following sequences:

Open window (use AiF window sequences and assign window colours).
send to PC 'ESC[12;014h'
send to PC clear screen code

Notes      The fill character ONLY applies to the currently open window (or the current screen if no windows are open).In general, this
facility should only be used for backgrounds. Printing text directly over fill characters is not always so elegant ! Very effective
screens can be created by using an appropriate fill character over the whole screen and opening a Selection Box (or Input
Box/Window) in the center of the screen.

After filling a window, close it to turn the fill character off.

Using Alternate PC Fonts

Terminal emulations generally restrict the range of characters that can be displayed to a selected subset of the PC Fonts table.
There are many occasions when applications need to be able to display other characters, such as currency, foreign language,
scientific symbols and so on.

To display any character from the standard PC Fonts table, use the following AiF sequence.

ESC [= 9 ; n h Switches to the specified font table n

Where:

Table Start End Offset

n = 1 032 127 0

= 2 160 255 -128

= 3 000 031 32

= 3 128 159 -64

The character values above are for decimal ranges.

To display any character from within a specified range, the application should:

(a) Switch on the appropriate font table.

(b) Display the character for the required character value
plus/minus the offset.

ESC [= 9 l resets the table back to the terminal font.

Click here for an example.

PC Font Examples

When presenting choices of selections from a pop-down menu or selection box, it is helpful to be able to display the PC's up/down
arrow key symbols to indicate which keys the user should use.

To do this use the following sequences:
Up_Arrow_display = character value of 2432
Down_Arrow_display = character value of 2532

send to PC 'ESC[=9;3h'
send to PC Up_Arrow_display at required cursor position
send to PC Down_Arrow_display (next to up arrow)
send to PC 'ESC[=9l'
send to PC " keys to select menu item"

Note      Emulation specific details such as cursor positions are handled separately from characters to be displayed on the screen. In
general, it is better to switch in to the required font, display the required characters at defined screen positions and then switch back
to the normal terminal font. In other words, there is no need to switch in to and out of the font for each special character.

Special Output Mode

There are occasions when output to the screen will attempt to address areas of the screen that are outside of the currently open
window.

Host applications may now suppress output to these areas of the screen by using the AiF sequences below.

ESC [= 5 h Suppresses any screen output addressing
areas outside the currently open window.
Output will be continued when the cursor is
repositioned to a valid coordinate (i.e. within
the current window).

ESC [= 5 l Disables this special output mode.

This AiF feature can be useful when GUIsing host applications over which one has limited control. For example, it might be possible
to add modules into such an application and make these modules more presentable by using some of HOSTACCESS's AiF features
such as windows, boxes and so on. However, it is quite possible that core routines within the original application will still insist on
addressing areas of the screen outside the new module's windows, e.g. to display system/error messages. In these instances it is
useful to be able to suppress this screen output which would otherwise tend to corrupt the display within the new module's AiF
windows.

Notes      Some developers using this feature have wrapped ORACLE applications with GUIised front ends and, in the PICK world,
RPL applications.

Centering Text

Any text string can be centered on a given line within the currently open window (or screen, if no windows are open) without the
need for the host application to work out the starting cursor column address.

Host applications can center text by using the AiF sequence below.
ESC _ Y1 C text ESC \ centers text within the current window (or screen)

Where:

Y1 Is the row (line) number within the currently open window (or
screen) on which the text should be centered.

C Is the literal capital 'C': AiF code for center.

text Is the text string to be centered.

Click here for an example.

Centering text example

Help text for an application might consist of, say, 7 lines held within an array. To display the help text centered within a window, use
the following AiF sequences:

assign help text array (read from file, etc..)
help_text(1) = 'help line 1'
help_text(2) = 'help line 2'
...
help_text(7) = 'help line 7'

open the help text window using colours yellow on red
send to PC 'ESC[=10;10;17;70;193;0;1;33;41w'

loop through the text displaying it
row = 1

loop
until row greater than 7
send to PC 'ESC_' row 'C' help_text(counter) 'ESC \'
row = row 1
repeat

wait for user acknowledgment and then close the window (with a window clear option)

Notes      Obviously, text strings wider than the current window (or screen) cannot be centered, but are truncated to fit within the
window.

Using Macros

HOSTACCESS's macro language enables you to open windows and display messages even before your users are connected to
their host applications. Because macros themselves support AiF sequences, it is easy to build macros with AiF features such as
colour, boxes, and windows.

Any macro may be invoked from a host routine by using the following AiF sequence:
ESC_ s macrotext ES \

Where:

s AiF delimiter, as a lowercase 's'.

macrotext Is the text of the required macro, with a carriage
return char (13) separating each line.

Keyboard Control Features

You can control loading and modifying the Function Keys available on any standard IBM or compatible PC Keyboard.

Most applications will normally relieve the user of having to manually program application specific Function Keys.

HOSTACCESS gives host applications up to 48 programmable Function Keys. Each Function Key may be individually loaded with
any ASCII character sequence, including control characters.

Note: HOSTACCESS supports international keyboard mapping for the USA
and all European countries.

Programmable function keys.
Switching scancode keys on/off.
Scancode keys table.
Typeahead mode.
Command stack control.

Programmable Function Keys

Any one or all of the forty Function Keys available in HOSTACCESS may be programmed by a host application to send character
sequences to the host as if they were entered from the keyboard. These character sequences may consist of any ASCII character
including control codes.

Click here to see the mapping of the forty programmable Function Keys to the Keyboard Function keys. This has been
extended to permit programming of a number of additional keys.

ESC_n K Key data ESC \

Where:

n Is the programmable Function Key Number. If this is set to 0 then all
programmable keys will be reset.

Key data Is the character(s) required to be sent to the host when the user presses the
Function. If this string is empty the key n will be reset.

Key. Key data should be entered as normal text (without quotes). Control characters are entered as ^A,^B, etc. Use ^^ for the
character '^'.

For characters in the range 128 to 255 enter the three digit decimal value after a '^' e.g. ^128. Any character may be entered in this
manner, but please note that 7 bit links will not send 8 bit characters - the top bit will be stripped off.

Examples

To program Function Key 1 to send the word SYSPROG, then a Carriage Return, then the word MENU followed by another
Carriage Return, use this sequence:

ESC_1KSYSPROG^MMENU^MESC\

or
ESC_1KSYSPROG^013MENU^013ESC\

Programmable Function Key Table

PROGRAMMABLE FUNCTION KEYS

Keyboard Keys AiF Programmable Key Number Keyboard
Type

Normal Shifted Ctrl Alt

Function Keys

F1 to F10 1 - 10 11 - 20 21 - 30 31 - 40 all

F11 41 43 45 47 AT

F12 42 44 46 48 AT

Arrow Keys

Up arrow 49 53 57 61 all

Down arrow 50 54 58 62 all

Left arrow 51 55 59 63 all

Right arrow 52 56 60 64 all

Edit Keys

Insert 65 71 77 83 all

Delete 66 72 78 84 all

Home 67 73 79 85 all

End 68 74 80 86 all

Page Up 69 75 81 87 all

Page Down 70 76 82 88 all

Programming Control Codes

Notes You can program any character into the function keys by using a top-arrow ^ followed by a 3 digit number. BACKSPACE
for example would be ^008, character 254 would be ^254.

Some useful control codes are listed below:

Programmable
Sequence

Description Keyboard Input

^I control I tab

^J control J line feed

^M control M carriage return

^[control [ESCape

Note that some XT compatible machines may not generate a code for the function keys F11 and F12, even though these keys may
be on the keyboard.

You should be aware of the order of precedence assigned to Function Keys, depending upon how they have been loaded.

Switching Scancode Keys On/Off

The PC keyboard has a number of keys that are generally accessible to the user when using DOS products but are not generally
accessible when using host applications. This is simply because there may not be any matching keys in the terminal being
emulated. Virtually all special keys, such as arrow keys, Page Up/Down, Ins, Del, Ctrl, Alt, etc., are now accessible to host
applications by using the PC Scancode keys facility with the following AiF sequences.

This AiF sequence is available to host applications regardless of what terminal emulation the user has chosen.

 ESC [= 6 ; p h Switches Scancode Keys on.

ESC [= 6 l Switches Scancode Keys off and keyboard inputs revert
to the characters that would normally be returned by the
user's current emulation.

p is the scancode prefix as the ASCII decimal value of the character to precede the keyboard response. The default value of p is
zero, but we recommend that p is set to 2 (ASCII character STX, start of text) so that this is consistent with all of the other AiF
sequences that send responses.

The prefix is needed so that applications can easily determine that they should be looking for Scancode keys when processing user
input. When switched on, the user keyboard responses are sent back to the host in the following format:

scancode_prefix key_scancode

Where:
scancode_prefix is the ASCII decimal value of character used as prefix.

key_scancode is the ASCII character corresponding to the key
depressed by the user. A list of Scancodes supported is
shown below.

Note: some UNIX systems are unable to accept ASCII character value 0 as valid input.

Scancode Keys

Click here to view the scancode keys currently supported by HOSTACCESS - any other key(s) entered by the user whilst
Scancode keys are on are returned in their normal character representation.

Ranges of keys are specified as from the leftmost key to the rightmost key on one row of the keyboard. For example, Alt/Q to A/Q to
Alt/P is the range of keys generated when the Alt key is pressed at the same time as one of the following Q,W,E,R,T,Y,U,I,O,P keys.

Scancode Keys Table

HOSTACCESS supports the following Scancode keys.
Keytop Legend
(keystrokes)

Scancode in
Hex

ASCII Character
decimal value

Alt Esc 01 1
Alt Backspace 1E 14
Shift + Tab 0F 15
Alt/Q to Alt/P 10 to 19 16 to 25
Alt [1A 26
Alt] 1B 27
Alt Enter 1C 28
Ctrl 1D 29
Alt/A to Alt/L 1E to 26 30 to 38
Alt/Z to Alt/M 2C to 32 44 to 50
Alt 38 56
Function keys 1-10 3B to 44 59 to 68
Home 47 71
Cursor Up 48 72
Page Up 49 73
Alt Num - (minus) 4A 74
Cursor Left 4B 75
Cursor Right 4D 77
Alt Num + (plus) 4F 78
End 4F 79
Cursor Down 50 80
Page Down 51 81
Ins 52 82
Del 53 83
Shift Function keys
1-10

54 to 5D 84 to 93

Ctrl Function keys
1-10

5E to 67 94 to 103

Alt Function keys 1-
10

68 to 71 104 to 113

Ctrl/Print Screen 72 114
Ctrl/Cursor Left 73 115
Ctrl/Cursor Right 74 116
Ctrl/End 75 117
Ctrl/Page Down 76 118
Ctrl/Home 77 119
Alt/1 to Alt/+ 78 to 83 120 to 131
Ctrl/Page Up 84 132
F11 85 133
F12 86 134
Shift F11 87 135
Shift F12 88 136
Ctrl F11 89 137
Ctrl F12 8A 138
Alt F11 8B 139
Alt F12 8C 140
Ctrl Up Arrow 8D 141
Ctrl Num - (minus) 8E 142
Ctrl Num 5 8F 143
Ctrl Num + (plus) 90 144
Ctrl Down Arrow 91 145
Ctrl Ins 92 146
Ctrl Del 93 147
Ctrl Tab 94 148
Ctrl Num / 95 149
Ctrl Num * 96 150
Alt Home 97 151
Alt Up Arrow 98 152
Alt Page Up 99 153
Alt Left Arrow 9B 155
Alt Right Arrow 9D 157
Alt End 9F 159
Alt Down Arrow A0 160
Alt Page Down A1 161

Alt Ins A2 162
Alt Del A3 163
Alt Num / A4 164
Alt Tab A5 165
Alt Num Enter A6 166

Scancode Keys Examples

To determine if the user has depressed the Function Key F1, regardless of the current emulation being used and regardless of the
possible contents of this function key (which may have been loaded by this or another application), use the following logical
construct:

switch scancode keys on
send to PC 'ESC[=6;2h'

get_user_input
input user_response
if first character of user_response equals ASCII 002 (decimal) then

scancode_key = 2nd character of user_response
if F1_pressed is true then

send to PC "you pressed the F1 key..."
and so on

Do not forget to switch Scancode keys off just before exiting this routine, with the following sequence:

send to PC 'ESC[=6l'
Scancode Keys Notes.

Scancode Keys Notes

It is important to remember to switch Scancode keys OFF when your application exits. If they are not switched off, other applications
may not be able to interpret user input correctly.

You should not switch Scancode keys on and off around individual input statements as this cannot be done fast enough for
typeahead. In general, switch Scancode keys on when entering a routine and switch off when exiting.

The Scancode prefix has been made a parameter so that you can change this to suit the host system or network on which their
applications are being used.

You can use this with the Page Keys facility of HOSTACCESS to give more flexible keyboard re-mapping and input.

If Scancode keys mode is on, the scan codes are sent to the host in preference to any other value associated with that key. Where
Function keys are concerned, Scancodes take precedence over host or user programmed function keys, etc.

Typeahead Mode

Users tend to like to be able to typeahead when running host applications, particularly impatient users or users that are familiar with
the keystrokes required to get to a defined point within an application. However, when host applications start to use the AIF menus,
selection boxes and field input modes, the user's typeahead keystrokes may be sent to the host (rather than to HOSTACCESS)
between successive AiF sequences.

To prevent this happening, host applications can switch on a special input mode that enables the user's typeahead keystrokes to be
saved for and used by HOSTACCESS's menus and input modes.

Host applications can switch this mode on by using the AiF sequence that follows.

ESC [= 20 h Switches Typeahead Mode on.

ESC [= 20 l Switches Typeahead Mode off. Any characters
within HOSTACCESS's typeahead buffer will
immediately be sent to the host.

Click here for an example.

Typeahead Mode Examples

The user may know that he/she is about to enter an application that makes use of HOSTACCESS AiF menus and that two right
arrows, then a down arrow, a carriage return and, finally, a Function Key F5 will select the required menu option and accept the
contents of an AiF input box.

By switching Typeahead Mode on, the host application will enable HOSTACCESS's AiF to locally process all of the user's
keystrokes, rather than send them to the host.

Notes

It is important to remember to switch Typeahead Mode OFF. If it is not switched off, other applications may not be able to interpret
user input correctly.

There is a limit of 20 bytes in HOSTACCESS's Typeahead buffer. In practice this is
adequate as processing will

end if
find out which key has been pressed

if scancode_key equals ASCII 059 (decimal) then
F1_pressed = true

end if
Process keyboard responsesalmost invariably catch up with the user before the user has been able to type in 20 characters.

If the user presses the break key, HOSTACCESS automatically switches Typeahead Mode off and flushes the PC's typeahead
buffer.

Command Stack Control

HOSTACCESS automatically records user keyboard input into a Command Stack within the PC's memory. The user is able to recall
this Command Stack, modify entries within it (by using the ALT/R hot-key) and re-use previously entered (or modified) commands.

Host applications, in general, will not want to fill up the user's command stack with input required by their applications (such as data
entry screens, etc.).

This AiF feature allows a host application to stop keyboard inputs being appended into the Command Stack and to re-enable this
feature (normally on exit from the application).

Host applications can switch this mode on and off by using the AIF sequences below.

ESC [= 21 h Enables the Command Stack.

ESC [= 21 l Stops HOSTACCESS putting
keystrokes into the Command Stack.

ESC [= 21 e Flushes the command stack

Click here for an example.

Command Stack Examples

The Command Stack has a limited number of entries, so in general, any application that requires keyboard input should disable the
Command Stack in order to preserve the user's commands entered before invoking the application.

Note: Applications that process user input on a single character basis will tend to add entries into the command stack until the user
enters a carriage return. Such applications should consider switching the command stack mode off while processing user input, then
switch it back on when the user exits the application or temporarily leaves it through an application's gateway.

Mouse Control

You can program certain host applications so that users can use a pointing device, such as a mouse, to interact with host based
software

You can give host applications the ability to monitor mouse movements and button depressions by the user with the following AiF
sequences.

You can also program Hotspots. A Hotspot is is a character string on an emulation screen which has been programmed so that
when you move the mouse cursor over the character string and click the right button, a particular function is activated. If the
character string starts with the text “F1” through to “F12”, the programmed value stored in that function key is returned to the host. If
that character string is not detected, then the first alphanumeric pattern from the left hand edge is returned with a postfix of Carriage
return, so that in the sequence A12B34, the string returned is “12A”.

To detect if a mouse is installed on the user's PC use this AiF sequence:
ESC [= 8 n

The following response will be sent to the host application:
<STX> <CR> code <CR>

Where:

<STX> Is the special Start of Text character (ASCII
decimal value 002).

code Is the mouse install status where:

0 mouse NOT installed

1 mouse installed

<CR> Is carriage return (ASCII decimal value 013).

To activate the mouse or Hotspots and determine which events should be monitored, use the following AiF sequence:

ESC [= 27 ; n h Switches mouse monitoring or
Hotspots ON.

Where:

n Is an integer code that determines which mouse
events will be returned to the host, where:

1 Monitor Left Button pressed down.

2 Monitor Right Button pressed down.

4 Monitor Centre Button pressed down.

8 Continuously send mouse addresses whilst
a button is depressed.

16 Switches on Hotspots.

65 Monitor Left button double click

66 Monitor Right button double click

68 Monitor Centre button double click

Note: Where 16 is used, only 1,2 and 4 will work. If 16 is applied on its own, the mouse will not work as no button has been
supplied.

Either mouse monitoring or hotspots may be enabled but not both. If the value of 16 is seen then Hotspots will be chosen in
preference.

These codes are additive, e.g. to monitor the mouse continuously while the Left button is depressed set this code to 9.

Format of Events Returned

Mouse events are returned to the host application in the following format:
<STX> MS <CR> button_status , Y1 , X1 <CR>

Where:

<STX> Is the special Start of Text character (ASCII
decimal value 002).

MS Is the literal letters 'MS' (AiF code for mouse).

<CR> Is carriage return (ASCII decimal value 013).

button_status The state of the mouse for this monitored event
code in the form an integer, where:

0 Only returned if "continuously" monitoring the mouse and
then when the button(s) is/are released.

1 Left button depressed.

2 Right button depressed.

3 Both Left and Right buttons depressed.

4 Centre button depressed.

5 Left and Centre buttons depressed.

6 Right and Centre buttons depressed.

7 Left, Centre and Right buttons depressed.

65 Left button double clicked
66 Right button double clicked
68 Centre button double clicked

Y1 The Y coordinate as an integer row value.

 X1 The X coordinate as an integer column value.

Mouse monitoring and Hotspots should be turned off with the following sequence:

ESC [= 27 l switches mouse monitoring or Hotspots OFF.

Click here for an example.

Mouse Interaction Examples

A host based calculator program could be dramatically enhanced by making use of AiF sequences, including mouse interaction. The
basic structure of such a program is outlined below:

Send to PC AiF sequences to "draw" the calculator (boxes, symbols, etc.)

Build map of valid mouse coordinates

Activate mouse and monitor any button with
send to PC ESC '[=27;7h'

Loop to process user input
input calc_key

if calc_key starts with STX then
input mouse_coordinates

map mouse coordinates into valid calc_key
end if

assign calc_operand from calc_key
process calc_operand until quit

Please note that in the above example:

a) No check has been made to see if a mouse is installed.

b) The routine attempts to handle both mouse and keyboard
input at the same time by looking for the special Start of
Text character. If this is found, mouse input is assumed to
have occurred. If not found, keyboard input is assumed.
Not all applications will need (or wish) to monitor inputs
from both devices at the same time.

Notes: You should be aware that if you monitor mouse events continuously you may "flood" the host system with data from the
mouse, with a detrimental impact on performance and user patience.

It is recommended that applications, particularly those running over asynchronous links or X25 networks, selectively monitor mouse
events, e.g. only when the user depresses the left button.

Mouse interaction will automatically work with existing AiF Selection Boxes and Pop-Down Menus. If a user chooses to use the
mouse whilst within an AiF menu, the mouse coordinates on the selected menu option are converted into the appropriate menu
coordinates. There is no need to include the above mouse processing AiF sequences within existing AiF menu processing routines.

Programmable DOS Gateway

The AiF DOS gateway gives host applications the ability to invoke DOS and to run DOS applications. Upon Exiting from DOS, the
user is returned to the host environment exactly where it was left, with the current screen, backpages, including the AiF menus, etc.
intact.

This DOS interface is so crisp that it is possible to seamlessly combine the DOS and host operating environments.

To invoke the AiF DOS gateway from a host application use the following sequence:
ESC _ sc ; 0 D Cmd1 ; ... ; Cmdn % keys ; Cmdnn ESC \

Where:

sc Is the screen control code in HOSTACCESS, as follows:

0 Opens, activates and normalizes a DOS shell window and
executes the DOS routines within that window.

1 Opens, activates and minimizes a DOS shell window.

When the DOS commands have been completed, the DOS shell window will be closed and the HOSTACCESS window will be
automatically reactivated.

0 Is the digit 0.

D Is the literal capital letter D.

Cmd1 .. Cmdnn If no commands are specified the user is taken to
the DOS command line. Entering EXIT will return
the user to the host session. If specified, these may
be any valid DOS commands. Any number of DOS
commands may be strung together using the semi-
colon as each command delimiter.

Cmdn % keys If DOS keyboard inputs are required to drive DOS
applications then a special symbol '%' may be
appended to a DOS 'command'. This turns on the
DOS Keyboard Stacker and feeds the DOS
applications with the keystrokes it requires. (Please
see DOS Keyboard Stackerfor details.

DOS commands sent by the application from the host should be in the same format as you would enter them at the DOS command
line.

They can consist of DOS operating system commands (such as DIR or CD), program calls (such as WS for WordStar) or batch file
calls.

Click here for some examples.

DOS Gateway Examples

To change directory to your word-processing directory WP and then run your word-processor, use the following sequence:
ESC _ 0;9D CD\WP;WP ESC \

As soon as the last DOS command is finished, the host application screen will be returned to. This may mean that the user will not
have an opportunity to read the output of commands such as DIR. However, DOS has a command called PAUSE which waits until
the user hits a key. You can add this command to your command string to allow the user to read the screen before it is overwritten,
for example:

ESC _ 2;0D DIR;PAUSE ESC \

This lists the contents of the current DOS directory and then waits for the user to hit a key after the 'strike a key when ready . . .'
prompt.

DOS Keyboard Stacker

DOS Keyboard Stacker is a facility within the DOS interface of HOSTACCESS which automatically places keystrokes into your PC's
keyboard buffer and sends them to a DOS application as if they were being typed in by the user.

Almost any keyboard input may be simulated and delays can be included to overcome problems caused by DOS applications
flushing the keyboard buffer before accepting input. This facility can be used with the AiF sequences described in the two preceding
sections for programmable DOS gateways and running DOS programs.

Keyboard Stacker Description

Ordinary alphanumeric data, including numbers, punctuation, braces, etc., are stacked by placing them within single or double
quotes on the command line as below:

% "document name"

Keys that do not correspond to a displayable character, for example control keys, are represented by special two character codes.

Special Keys: Mnemonics

A number of mnemonics are defined to represent certain special keys. These are:
LA Left Arrow
RA Right Arrow
UA Up Arrow
DA Down Arrow
PU Page Up
PD Page Down
HM Home
EN End
IN Insert
DE Delete
TA or TB Tab
ST or BT Shift Tab (=Back Tab)
ES Escape
BS Backspace
SP Space bar
CR Enter
LF Ctrl-Enter
DQ The double quote "
SQ The single quote '

These codes can be entered in upper or lower case. You may use spaces between mnemonics to increase readability. These
spaces will be ignored (unless they are between quotes).

Special Keys: Leader Characters

A number of keys (such as Shift, or function keys) can be represented by a special leader character, followed by a single character
qualifier.

For example, function keys F1, F2, F3 …F9 are represented by F1, F2, F3 …F9. Function keys F10, F11 and F12 are represented
by F0, FA and FB respectively.

There will be times when a DOS application program or command will flush the keyboard buffer before asking for a keystroke. This
is to force you to respond or to make sure the response is not accidental. If you just stack the keys you want, they will also be
flushed out. An example of this is the DOS LABEL command.

You can place a delay into the stack, so the DOS Keyboard Stacker will pause for a specified period before continuing to insert keys
into the buffer, using the command Wnn. For example, to wait about 2 seconds before putting an ESCape key into the buffer, use:

% W36 ES

Alternatively, to program a wait of about one minute, followed by an ESCape key, use
% W255 W255 W255 W255 ES

:It is also possible to insert "pauses" within the keyboard stacker sequences, using the WP, WE and WB mnemonics, and these
wait for user input before activating any subsequent stacked keys.

All these mnemonics are summarized below:

Character Represents Character Represents

^ Control function Wnn Wait time in 55 millisecond units
(clock ticks, about 18.2 per second),
where nn is from 1 to 255.

@ Alt function WP Wait for user key and then pass it
on.

Shift function WE Wait for user key and then throw it
away.

F Function key WB Wait until key buffer is empty.

S Shift function
key

BR Break

C Control
Function key

A Alt Function
key

For example, ^C represents Control C, @2 represents Alt/2, and A9 represents Alt/F9.

Here is a simple example of a DOS command using DOS Keyboard Stacker. To execute the DOS TIME command, wait 1 second
and then input a time of 12:10 followed by a carriage return, use:

ESC _ D TIME % W018 "12:10" CR ESC \

Printing to a DOS File or Device

All forms of terminal printing including screen dump, hardcopy and direct (slave) printing are supported.

Printer output can be generated via an AiF sequence from the Host or from within HOSTACCESS, and can be directed to a DOS
disk file or to a printer on the PC. The print destination can either be set through the Print Setup... option on the Session menu or
from the host application using an AiF sequence. This destination name will only affect the currently active session.

All terminal emulation protocol specific printing commands are supported, for example McDonnell Douglas' PORTOUT. However, it
is recommended that you use the ANSI sequences given below as they are supported in all the terminal emulations available (and
so applications will only need to support one set of terminal printing sequences).

ESC [= 0 i Print screen to current print device.

ESC [= 4 i Switch OFF direct (slave) printing.

ESC [= 5 i Switch ON direct (slave) printing to current
print device.

ESC [= 8 i Closes the printer, even when the keep printer
open feature is enabled.

To change the current DOS device for printing for the currently active session, use the following sequence:
ESC _ L device.name ESC \

Where:

device.name Is any valid DOS printing device or a
DOS path\directory\filename.

Click here for examples.

Printing Examples

1. To send print data to a printer on parallel port 1 use the
following 'code':
SET DEVICE send to PC 'ESC_LLPT1ESC \'
PRINT ON send to PC 'ESC[=5i'
 send to PC print_data_lines
PRINT OFF send to PC 'ESC[=4i'

2. To switch printing to the DOS file C:\PRINT.LST and to append
a dump of the screen contents to it, use the following 'code':
SET DEVICE send to PC 'ESC_LC:\PRINT.LSTESC \'
DUMP SCREEN send to PC 'ESC [=0i'

Notes Although both ANSI and terminal protocol specific printing commands will be accepted, direct print On and Off commands
should be matched. For example, you cannot use the PRISM specific command to switch on printing and the ANSI command to
switch it off.

If you are using the Host Printing facility of HOSTACCESS's File Services, do not attempt to direct DOS printing to this device.

When printing to a DOS file, this file is always appended to. If this is not required, delete the file before printing commences. This
may be done by using the Erase DOS File AiF sequence.

AiF has an additional 'printing' feature that enables screens to be sent back to the host system, for details see Capturing Screen
Text.

Erase DOS File

Host applications that pipe data to DOS files will often need to delete the target DOS file at some stage within their processing.
Applications will want this to happen transparently to the user (i.e. without the need of invoking the DOS gateway and executing the
DOS Del command).

This is easily achieved by using the AiF sequence that follows.
ESC _ E filename ESC \

Where

filename Is the name of the DOS file to be deleted, including
its filename extension and the full DOS drive:\path
to the file.

Examples

To delete the DOS file called TEMP.DOC in the DOS drive:\path C:\HOST, use the following sequence:
send to PC 'ESC_E C:\HOST\TEMP.DOC ESC \'

Notes      Use with care!

No indication or request for confirmation of the file deletion is given to either the user or the host application. It is the application's
responsibility to verify that the correct file has been deleted, if this is required. If the DOS file to be deleted does not exist, control is
simply returned uninterrupted to the host application.

See Verify DOS File or Directory Exists if you need an AiF sequence to verify the existence of a DOS file.

Request HOSTACCESS DOS Run Directory

Host applications can request that HOSTACCESS tells them from which DOS directory HOSTACCESS is running.

It is often useful for host applications to be aware of the current run-time DOS path so that this can be used to store temporary DOS
files, for example, when automating file transfer.

This is quickly achieved by using the AiF sequence below.
ESC [= 9 {;code} n

Where:

Code 0* = Working directory, long file name format

1 = Installation directory, long file name format

8 = Working directory, short file name format

9 = Installation directory, short file name format

Note: Long file name support is available to both the 16 and 32-bit versions of HOSTACCESS, but only on Windows 95/98 and NT.

HOSTACCESS responds with the following message:
<STX> <CR> path <CR>

Where:

<STX> Is a special start of text character (ASCII
decimal value 002).

path Is the full DOS drive and path to the
HOSTACCESS run-time directory, e.g.

C:\HOSTACC\HOST.EXE

<CR> Is a carriage return (ASCII decimal value
013).

Examples

To request the current HOSTACCESS run-time directory, use the following sequence:
send to PC 'ESC[=9n'
loop input response until response equals STX do repeat
input pc_path
DOS_run_drive = first two characters of pc_path
DOS_run_directory = all characters after the last "\" delimiter
in the pc_path string

Note:      Remember that the current DOS session drive and path may be changed in a number of ways, by other AiF sequences, or
by the PC user. This sequence is useful for host applications that need a consistently valid DOS path for operations such as file
transfer to DOS.

Refer to the following section if you need an AiF sequence to verify the existence of a DOS file.

Verify DOS File or Directory Exists

Host applications that manipulate DOS files (e.g. through HOSTACCESS's file transfer, FORMs or direct print facilities) often need
to check the existence of the target DOS file at some stage within their processing. Applications will want this to happen
transparently to the user.

This is easily achieved by using the AiF sequence that follows.
ESC _ G path ESC \

Where:

G Is the capital letter 'G'.

path Is the name of the DOS file or directory to
be verified, including its filename
extension and the full DOS drive:\path to
the file.

HOSTACCESS answers this inquiry with a response in the following format:
<STX> <CR> code <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

<CR> Is carriage return (ASCII decimal value 013).

code Is an integer code that answers the verification request as one of the following: 0
(DOS path does not exist), 1 (DOS File exists) or 2 (DOS Directory exists).

Click here for an example.

Verify DOS File Examples

To verify the DOS file called TEMP.DOC in the DOS drive:\path C:\HOST, use the following sequence:
send to PC 'ESC_G C:\HOST\TEMP.DOC ESC\'
loop until input_string equals STX do repeat
input response
if response equals 0 print "File does NOT exist !!"
if response equals 1 print "File exists"
if response equals 2 print "TEMP.DOC is a DIRECTORY !!"

Note      HOSTACCESS verifies the existence of either a file or a directory dependent upon the DOS path specified.

Displaying Images

HOSTACCESS uses a separate Windows program to display images. Images are displayed within their own window which can be
moved, re-sized, maximized, or minimized by the user, as required.

The Display Images program can be invoked using the Start Windows Program sequence (described later in this section), using the
following command line parameters.

Use the following sequence to display an image:

IMAGE /I filename {/T title} {/Z zoom} {/F}

Where:

IMAGE Is the name of the image display program (IMAGE.EXE) which
will have been installed into the directory in which
HOSTACCESS was installed.

/I Is the command line flag indicating that an image filename will
be specified. This flag must be followed by a space.

filename Is the full path and filename for the .PCX image file. There is no
need to specify the .PCX suffix.

/T Is the optional command line flag indicating that a title will be
specified. This flag must be followed by a space.

title Is an optional title that will be displayed in the Application Name
bar. If omitted, "Image [Filename]" will be used.

/Z Is the optional command line flag indicating that a zoom factor
will be specified. This flag must be followed by a space.

zoom Is the zoom factor as a percentage of the image's size. The
default is 100 (same size). The zoom factor can be any number
greater than 0, such as 25 (¼ size), or 200 (x2 size)

/F Specifies that the image is to fit into the size of the image
display window. If specified, this means that if the user changes
the image display window size, the image will automatically be
scaled to fit as best as possible.

Displaying multiple images.
Closing the image application.

Displaying Multiple Images

You can display more than one image on the same screen at the same time. To achieve this, simply send another AiF sequence for
the next image, changing the scale as required (and before waiting on input for the response).

There is no limit to the number of images that can be displayed in this manner, simply repeat the AiF sequence for each image. It is
often useful to decrease the size of these images by setting the 'scale' parameter to 50 (half size) or less.

Please note that multiple images can only be displayed on the same screen if they all have identical palettes. Images with different
palettes will 'corrupt' each others' screen image (often giving an "infra-red" like display).

Users displaying images will see the images displayed using the resolution and colours as per the current Windows desktop.

Closing the Image Application

This AiF sequence closes a Windows application and should be used to close Windows that are displaying images.

This sequence should be used with great care. Close Application is only intended for use with Windows applications that do not
support DDE. If an application supports DDE, we strongly recommend that you use a DDE link to close the application.

ESC_x AP ESC \

where _x is AiF code, and AP is the name of the Windows application that is to be closed.

Note: TYhis name should exactly match the name displayed in the application's title bar. This name is not case sensitive but it is
sensitive to other factors, such as double spaces, curly brackets, etc.

The host application should close down image windows when appropriate. Please bear in mind though, that the user also has this
capability. Images may be removed from the user's desktop by using the Close Image Windows Application sequence (described
above). Make sure that you specify the correct image window by using the exact name of the window, which will be either "Image
[filename]" or "title", if a title was specified when the image was invoked.

Control State of Window

This AiF sequence provides control over the window state (minimize, maximize etc.) of a given application already running on the
Windows desktop.

ESC _ ST c AP ESC \

Where

ST Changes the State of the application's window as follows:-

1 - Activates and displays the window

2 - Activates and minimizes the window

3 - Activates and maximizes the window

7 - Displays the window minimized but does not change active
window

c Is lowercase c - AiF code.

AP Is the name of the Windows application. Normally this is the
name held in the window Title as shown exactly on the
desktop, i.e. WordPerfect [DOCUMENT1 - UNMODIFIED] If
AP is null, the state change will affect the current window.

Control window state response format.

Control Window State Response Format

The response will be
<STX> <CR> status <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

<CR> Is a carriage return (ASCII decimal value 013).

status Is the task number which is 0 if the application does not
exist.

Note It is recommended that you use DDE if it is available and practical because using the server name is more accurate and
reliable than depending on the Application Name.

Start Windows Program

Use this sequence to allow any Windows program to be started on the desktop:
ESC _ ST e PN ESC \

Where:

ST is the state in which you want the Windows program to be started:

1 Activates and displays the Window.

2 Activates and minimizes the Window.

3 Activates and maximizes the Window.

7 Displays the window minimized but does not change active
window.

e Is lowercase e - AiF code.

PN Is the name of the Windows program that you wish to start e.g.
123W or D:\123W\123W (If .EXE is omitted, it is assumed). If you
do not specify a drive and/or path, the Windows application will be
searched for in the following sequence:

1 Look in current directory.

2 Look in the Windows directory.

3 Look in the Windows SYSTEM directory.

4 Look in the directories specified in the PATH variable.

5 Look in the directories mapped in a network.

You can also specify startup parameters here. For instance:

d:\123W\123W DEMO.WK3

to start 123 for Windows and open DEMO.WK3 worksheet.

Response format.

Start Windows Program Response Format

The response will be
<STX> <CR> status <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

<CR> Is a carriage return (ASCII decimal value 013).

status Is the task number of the application. If it is < 32 the
application was not started.

Detect if Windows Application Running

Use this sequence to ascertains whether or not a Windows application is running:
ESC _ a AP ESC \

Where:

a Is lowercase a - AiF code.

AP Must be the name of the Windows application. Normally
this is the name held in the Window Title as shown exactly
on the desktop, e.g.WORDPERFECT [DOCUMENT1 -
UNMODIFIED].

The response will be:
<STX> <CR> status <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

<CR> Is a carriage return (ASCII decimal value 013).

status Is the task number which is 0 if the application is not
running on the desktop.

Note If the application supports being a DDE server, it is recommended that you use the ESC_ld SN;TP ESC\ sequence (Initiate
DDE) to detect whether that server application is active or not, because using the server name is more accurate and reliable than
depending on Application Name.

Send Keys to Windows Applications

This sequence sends keys in the DOS keyboard stacker format to the specified Windows application AP. This allows almost any
Windows application to be driven automatically.

There is no conversation taking place between HOSTACCESS and the Windows product to which you are sending keys, so you
have no way of validating that the keys have been accepted by the other product. We recommend that you at least validate that the
other application is running before you attempt to send keys. To do this, you can use either the AiF sequence Detect if Windows
Application is Running, or the sequence Initiate DDE.

Send Keys to Windows Application

ESC _ k AP % keys ESC \

Where:

k Is lowercase k - AiF code.

AP Must be the name of the Windows application. Normally this is
the name held in the window Title as shown exactly on the
desktop, e.g.

WORDPERFECT [DOCUMENT1 - UNMODIFIED]

If AP is null, keys are sent to the current window.

% Is an AiF delimiter.

keys In the same format as the DOS keyboard stacker (see DOS
Keyboard Stacker for details).

You should use DDE if it is available and practical, as using the server name is more accurate and reliable than using the
Application Name.

Miscellaneous AiF Facilities

The following topics are miscellaneous but very important features within AiF.

For additional or modified AiF features, please contact your dealer or Pixel Innovations directly. We have a policy of incorporating
user feedback directly into future releases where these requests fall within the general development strategy. (For details of the
latest enhancements available in HOSTACCESS, refer to the READ.ME file on the HOSTACCESS disk.)

Closing HOSTACCESS From the host.
Requesting the serial number.
Getting HOSTACCESS Run-time Status
Capturing Screen Text.
Changing Emulation.
File transfer.

Closing HOSTACCESS From Host

An AiF sequence is available to close HOSTACCESS. This feature allows application developers to include 'close HOSTACCESS' in
their application menus.

HOSTACCESS will NOT ask the user to confirm the close request as would be done if ALT/X was entered from the keyboard.

The user will be returned straight to DOS and without any warning if the HOSTACCESS parameters have been changed.
ESC _ X ESC \

Notes: After closing HOSTACCESS the application should normally close the host process that was driving HOSTACCESS.

This AiF sequence is often used in conjunction with automated File Transfer to or from the host but initiated from the PC through the
use of HOSTACCESS's Macro Language. It enables the PC to process file transfer(s) remotely, logoff the host session and then exit
HOSTACCESS to return to the controlling DOS process (batch file).

For more information on the macro language, please refer to Using the Macro Language.

Requesting the Serial Number

In many applications areas where security or access to data needs to be controlled, it is necessary to identify the user before
allowing access into an application. This is normally achieved through the use of passwords and physical port addresses on the host
system.

HOSTACCESS offers an additional method of identifying a user. Each copy of HOSTACCESS is given a unique serial number and
when it is installed on a PC it is targeted to that PC's hard disk. This AiF sequence requests HOSTACCESS to send its unique serial
number to the host application.

ESC [= 1 c

The Serial Number is returned in the format:
<STX> <CR> nnnn <CR>

Where:

<STX> Is a special start of text character (ASCII decimal value 002).

<CR> Is a carriage return (ASCII decimal value 013).

nnnn Is the unique serial number.

To check that a user who is requesting supervisor status is running HOSTACCESS serial number 300356, use the following:
turn host echo off
send to PC 'ESC[=1c'
leader = null
loop until last character of leader = CHAR(002)

input leader
repeat
input serial_nbr
if serial_nbr eq 300356 then

supervisor = true
otherwise

supervisor = false
end if
turn host echo back on

Notes: Switch host echo off before requesting the serial number, or screen corruption may occur.

Users who are using copies of HOSTACCESS provided under a site license agreement will find that the serial number is the same
for all installed copies.

If you need to detect individual HOSTACCESS users by their serial numbers from one installed site license, please contact your
HOSTACCESS dealer.

Getting HOSTACCESS Run-time Status

This AiF sequence may be used to find out more information about HOSTACCESS and its run-time environment.

Use the following sequence to get the HOSTACCESS Run-time status:
ESC [= 10 n

This returns
<STX> <CR> a;b;c;d <CR>

Where

<STX> is the start of text character (ASCII decimal value
002).

<CR> is a carriage return (ASCII decimal value 013).

a 1 if Windows version running or 0 if DOS version

b 1 if current PC is colour, 0 if mono

c 1 if blinking is enabled on PC, 0 if not

d 1 if this PC has a mouse that HOSTACCESS can
use, 0 if not

Note This sequence combines several AiF sequences into one. In time, we will extend the information returned by this sequence,
and for this reason we recommend that developers use this sequence in preference to the individual sequences to get serial
number, blinking status, etc.

Capturing Screen Text

As well as being able to dump the current screen text to an attached local printer or to a DOS file, you can also send that same
screen text up to the host. This screen text can then be sent on to the system printer, saved in a file or indeed used anywhere else
on the host system.

Upon sending the appropriate sequence, the PC will send the screen text back to the host. Each line of the screen is sent to the
host with all non-printable characters replaced by spaces and terminated by a carriage return.

The following AiF sequences can be used to capture screen text.
ESC [= 2 i

or
ESC [2 ; n i

Where:

n Is the optional parameter determining which screen is sent to the host, as:

HOSTACCESS returns the screen to the host with each line separated by a
carriage return and adds a leading and trailing start of text (ASCII value 002)
character. The format of the reply to this AiF sequence is:
<STX> <CR> line1 <CR> line2 <CR> ... lineN <CR> <STX> <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

<CR> Is a carriage return (ASCII decimal value 013).

line1 ... lineN is each line of the screen. The number of lines will vary
depending upon the current screen configuration.

Click here for an example.

Capturing Screen Text Example

As each line of the screen is terminated by carriage return, a simple program can be written to retrieve each line of the screen
image into an array.

For example:
screen = ""
counter = 1

send to PC 'ESC[=2i'
echo off
loop input resp until resp equals STX do repeat
loop

input line
until line equals STX do

screen(counter) = line
counter = counter 1

repeat
echo on
display counter:"screen lines sent to host"

Notes Host echoing of terminal input must be switched off before requesting the screen image. Otherwise, the user's application
screen will be corrupted.

This feature can be very useful for documenting applications screens as well as giving users the ability to capture any screen at any
time back to the host system.

Another method of (automatically) sending the host session's screen back to the host would be to:

1. Assign the DOS Print device to a DOS file name.

2. Send the ANSI sequence to "print screen"

3. File transfer the DOS file up to the host.

This method may be simpler in some circumstances and would enable you to capture IBM graphics within the screen.

Changing Emulation

In some applications areas it may be useful to be able to change the current terminal type that HOSTACCESS is emulating. A
special AiF sequence is provided for this.

ESC [= n {

Where:

n is the emulation number for the required emulation as follows:

0 VT100 11 SM 9400

1 VT220 (7 bit) 12 Ansi

2 VT220 (8 bit) 13 Videotex

3 Prism8/9 14 Microfusion

4 Prism9 Ansi 15 Ampex

5 QVT119 16 TV1920

6 Wyse50 17 Galileo

7 Wyse60

8 AddsVp

9 UCL Term

10 DG 216

{ the literal character '{'.

Applications which invoke other applications specifically enhanced for different terminals can now swap between the required
emulation. In practice, this only occurs very rarely. However, we do know of one application that was built around one terminal type
but has later been enhanced to call another "word-processing" application that was specifically targeted for a different terminal type.

Notes      Developers should note that changing emulations will effectively reset the terminal, wiping out all previous backpages,
screens, slots etc. If the previous environment needs to be saved then use the AIF sequence to "push environment", see Save
Environment

File Transfer

Use the following AiF sequence to start a file transfer:.
ESC _ mode ; hostdriven ; 1; append ; 0 ; protocol ; ist ; direction local ;
Remote {; FTP server} {; username} {; password} ESC \

Where:

Mode 0 = binary.

1 = text.

hostdriven 1 = H. (if using protocol number 9, this displays the progress
diaolog during the transfer).

2 = Z. These are the DOS.PICK/PICK.DOS flags. (if using
protocol number 9, this will not display the progress diaolog
during the transfer).

append 0 = Overwrite destination file.

1 = Append to destination file.

Note: If using protocol number 9, this parameter is ignored.

protocol 0 = Proprietary.

1 = Kermit.

2 = X/Ymodem.

3 = Zmodem.

ist 0 = Transfer is to local PC file (normal).

1 = Intersession file transfer.

Note: If using protocol number 9, this parameter is ignored.

direction { = Send file to host.

} = Receive file from host.

local Filename on the PC.

Remote Filename on the host.

ftp server The FTP server address (URL) Only relevant when using
protocol 9)

username The username to be used when connecting to the FTP server.
Only relevant when using protocol 9)

password The password for the username above. (Only relevant when
using protocol 9)

For example:
ESC_1;0;1;0;0;3;0{c:\monkey.txt;pigESC\

will start a Zmodem file transfer to send the file “c:\monkey.txt” on the PC to the file “pig” on the host.

For example
ESC_1;2;0;0;9;0;}c:\dn\drivers.zip;/services/technet/drivers.zip;ftp.microsoft.com;anonymous;
passwordESC\

Will download the file '/services/technet/drivers.zip' from the ftp server into the local file c:\dn\drivers.zip.

No progress dialog will be displayed.

Dynamic Data Exchange

The following topics describe how DDE works and summarise the DDE Escape sequences. They explain how you can use DDE
with HOSTACCESS, DDE Client support and DDE Server support.

How DDE works.
DDE sequences.
Using DDE with HOSTACCESS.
DDE client support.
DDE server support.

How DDE Works

Dynamic Data Exchange (DDE) is used to transfer data between Windows applications.

Two applications that participate in DDE engage in what is known as a DDE conversation. The application that initiates the
conversation is known as the client application, and the application that responds to the client is known as the server application.

Any Windows product that supports DDE as a server application must have a server name. For example, the server name for Word
for Windows is WINWORD and for Quattro Pro it is QPW. To initiate a DDE link with a server application, you would normally use
the server name and this would return a channel number. Using this channel number you would then send commands (normally in
the format of the macro language supported by that server application) and finally close the link with that channel number when all
processing is completed.

When communicating with a server you must also always specify a topic. Server applications can support many topics depending
on which part of that application you want to communicate with. For instance, if you want to request information from Quattro Pro on
a specific spreadsheet, the server name would be QPW and the topic name would be the spreadsheet name.

DDE was designed to form a standard way of communicating between Windows applications. However, the fact that each Windows
application supports DDE differently (or sometimes not at all) makes it more difficult for the novice to understand it or become
involved with it.

If you want to program using DDE, you will have to learn as much,if not more about the server application that you want to talk to,
rather than if you were a direct user of the product itself.

 DDE Sequences Summary.
 Using DDE with HOSTACCESS.
 DDE client support.
 DDE server support.

DDE Sequences: Summary

Close a DDE link already
established with Initiate
DDE sequence

ESC _9d SN;TP ESC \

Send commands to server
application

ESC _ 2 ; TM d SN ; TP ; MA ESC \

Open a DDE channel with a
server

ESC _ 1d SN;TP ESC \

Pass data to server ESC _ 3 ; TM d SN ; TP ; IT ; ST ESC\

Retrieve data from server ESC _ 4; TM d SN ; TP ; IT ESC \

Using DDE with HOSTACCESS

You can use DDE to use HOSTACCESS as a DDE client to other Windows applications (servers), sending data and instructions
from the host to a Windows application. This gives your own host programs and applications almost total control over any other
Windows product.

Using DDE with HOSTACCESS, you only need to specify the server name for any DDE process. HOSTACCESS automatically
keeps track of channel numbers internally for you.

All Windows applications support a general topic name system. Unless you are setting up more complicated DDE links, this topic
should be more than adequate for most developers. (All of the PASS.TOs for Windows use the SYSTEM topic).

You can also use DDE to use HOSTACCESS as a DDE server. You can write Windows programs in such applications as Word or
Excel, which can send and receive data to and from the host software.

Note: You must have a resilient link from the PC to the host. DDE cannot work remotely unless full flow control and error checking
are in place.

DDE client support.
DDE server support.
DDE sequences summary.

DDE Client Support

The following topics describe the AiF sequences used to connect, communicate, and disconnect between client and server
applications in a DDE environment.

You should have a full knowledge of DDE before using these features.

To open a DDE channel with a Windows application, use the following AiF sequence

ESC _ 1d Server ; Topic ESC \

Where

Server Is the Server name of the application.

Topic Is the Topic for that application.

If a link is already open to this server and topic it will be re-used.

DDE response fomat.
Sending commands to the server.
Sending commands to the server (poke)
Requesting data from a server.

 Closing a DDE link.
DDE server support.

DDE Response Format

The DDE initiate response will be
<STX> <CR> status <CR>

Where:

<STX> Is the start of text character (ASCII decimal value
002).

<CR> Is a carriage return (ASCII decimal value 013).

status Is 0 if successful and > 0 otherwise, as follows:

1 - Application link not open (no initiate)
2 - Timeout
3 - Topic not supported by application
4 - No DDE channels available
5 - Server closed
6 - Server busy
7 - Server NAK (Not Acknowledge)

Sending Commands to the Server

To send commands to the server application (to allow it to be driven and updated automatically), use the following sequence:
ESC _ 2 ; Timeout d Server ; Topic ; Mstring ESC \

Where:

Timeout If used sets the timeout on DDE commands to that number
of seconds. If a DDE macro being passed is going to take a
long time it is sometimes worth using a high value to stop the
DDE terminating on a timeout (NAK).

Server Is the Server name.

Topic Is the Topic name, normally SYSTEM.

 Mstring Is the macro string in the format expected by the DDE server
application.

 A successful DDE Initiate must have been made with Server name and Topic before the macros can be sent.

For example:
[FileOpen.Name = "C:\WINWORD\TEST.DOC"][FileOpenDataFile.Name etc.,]

or
{FileOpen C:\QPW\TEST.WB1}{COLUMNWIDTH A1..C20,1,2,3}{etc.,}

Multiple macro commands may be passed using the above square brackets to separate each macro command. Some products (like
Quattro Pro) seem to prefer curly square brackets rather than normal square brackets like most other Windows applications. Please
check the documentation for the Server Application if normal square brackets do not work.

Response Format

The DDE initiate response will be
<STX> <CR> status <CR>

Click here for definitions of <STX>, <CR> and status

Sending Data to a Server (Poke)

This sequence allows data to be passed directly to another Windows application (the server). Most DDE servers have defined
elements (items) that the server knows about, which can accept data from DDE clients. For example, R1C1 is the item name for
some spreadsheet packages.

A successful DDE Initiate must have been made with Server name and Topic before the data can be sent.
ESC _ 3; Timeout d Server ; Topic ; Item ; String ESC \

Where:

Timeout If used sets the timeout on DDE commands to that
number of seconds. If a DDE macro being passed is
going to take a long time it is sometimes worth using a
high value to stop the DDE terminating on a timeout
(NAK).

Server Is the Server name.

Topic Is the Topic name, normally SYSTEM.

Mstring Is the macro string in the format expected by the DDE
server application.

Item Is the Item name recognized by the DDE server.

String Is the string of data to put into IT specified above.

The response will be
<STX> <CR> status <CR>

Click here for definitions of STX, CR and status.

Requesting Data from a Server

This sequence allows data to be retrieved directly from another Windows application (the server). Most DDE servers have defined
elements which the server knows about (called items) where specific pieces of information reside.

A successful DDE Initiate must have been made with Server name and Topic before the data can be retrieved.
ESC _ 4; Timeout d Server ; Topic ; Item ESC \

Timeout If used sets the timeout on DDE commands to that
number of seconds. If a DDE macro being passed is
going to take a long time it is sometimes worth using a
high value to stop the DDE terminating on a timeout
(NAK).

Server Is the Server name.

Topic Is the Topic name, normally SYSTEM.

Item Is the Item name recognized by the DDE server.

The response will be:
<STX> <CR> status <CR> string <CR>

Click here for definitions of <STX>, <CR> and status.

String is the data held as returned from the Server application. The data may be tabbed or comma delimited, dependent on the
server application.

Close DDE Link

This sequence closes a DDE link already established with the Initiate DDE sequence. It is recommended that you close DDE links
when any DDE conversation is completed.

ESC _9d SN;TP ESC \

Where:

SN Is the Server name.

TP Is the TOPIC of the DDE session to close
conversation with, normally SYSTEM.

DDE Server Support

You can use HOSTACCESS to act as a DDE server to Windows applications such as Word and Excel, sending data to the host,
receiving data from a host and allowing the Word or Excel application to obtain the results.

Any Windows product that supports DDE as a server application must have a server name. In HOSTACCESS’s case this is:

Servername: HA7

Topic: Session name

dderequest: Read text from screen (RxCxNx) where
R=row, C=column, N=no. of characters to
read

ddepoke Text send keystrokes to application “key
stack commands’ text”

Click here for an example.

DDE Example

The following WordBasic example provides a list of the available system items, topics and formats supported by the application:
Sub MAIN
 DDETerminateAll
 n = DDEInitiate(“HA7”, “system”)
 a$ = DDERequest$(n, “SysItems”)
 MsgBox(a$, “SysItems”)
 b$ = DDERequest$(n , “Topics”)
 MsgBox(b$, “Topics”)
 c$ = DDERequest$(n , “Formats”)
 MsgBox(c$, “Formats”)

 DDETerminate n
End Sub
Some applications that support DDE: Microsoft Word for Windows, Excel, Visual Basic.

Using the Macro Language

The HOSTACCESS macro language is a simple and powerful tool that allows you to automate standard tasks. For example, you
can use the macro language to automate your login procedure, or to call a Windows application and run a set of tasks within it.

The following topics describe all the features provided in the macro language, and how to use each one.

Syntax conventions.
Declaring variables.
Using functions
Using the macro language to send and receive AiF escape sequences.
Macro summary.

Click here for an example which demonstrates the power of the macro language.

This documentation assumes that you are familiar with basic programming concepts, such as loops, variables, expressions and
commands.

Syntax Conventions

Each command described has an associated syntax diagram, to help you understand the exact usage of the command. These
diagrams should be intuitively clear. In case of confusion, refer to the following table for explanations of the conventions used:

Symbol Meaning

Start of a command.

Continuation character.

End of a command.

New line.

Either A or B must be chosen.

Either A or B can be chosen.

A can be repeated.

As above, but each repetition must be
separated by a comma.

: Statement separator character.

Commands are described in upper case (and emphasized in bold in the syntax diagrams). Variables, procedures and functions
are described in lower case. The macro language itself is case-sensitive for variables, procedures and function names, but not for
command statements.

 Using the macro language to send and receive AiF escape sequences.
Macro summary.

Using AiF Escape Sequences

You can use the macro language to send and receive AiF escape sequences.

AiF escape sequences are normally sent from the host to the PC, and replies are returned from the PC to the host. Under some
circumstances, however, you may want to control the operations entirely from the PC; for example, when you have no control over a
host program.

Use the PRINT command to send an AiF escape sequence, and the INPUT command to read a reply from the AiF.

 Declaring variables.
Macro summary.

Declaring Variables

Before using a variable, you must declare it. To declare a variable, use one of the following statements:

· DIM: for local declarations

· GLOBAL: for global declarations. Global variables must be declared, and survive between macro programs and
HOSTACCESS sessions. Therefore, we recommend you limit the number of global variables declared

Examples
DIM a, b, c AS INTEGER

GLOBAL name AS STRING

Syntax

 Using functions.
Macro summary.

Using Functions

Use a function as an expression, which returns a value. Define functions with the FUNCTION ... END FUNCTION command, and
call them as expressions.

Example
FUNCTION squareadd(b AS INTEGER,c AS INTEGER) AS INTEGER
REM returns the square of two parameters b and c

squareadd=b*b + c*c
END FUNCTION

:
:

LET a = squareadd(14,6)
Syntax

 System functions.
Macro summary.

System Functions

Following are descriptions of the system functions available with the macro language.

Name Purpose Call As

Chr$ Converts integer to string character Chr$(n)

Field$ Returns the nth item from the string list, where each
item is separated by the string s.
For example, Field$(“Hello;world”, “;”, 2) = “world”

Field(list,s,n)

Id$ Used with the INPUT command Id$(string)

Index Returns the starting character position of string2 within
string1. 0 is returned if string2 is not found within
string1.
For example, Index(“hello world”, “world”) = 7.

Index(string1,string2)

Left$ Returns the n leftmost characters of string Left$(string,n)

Len Returns the number of characters in a string Len(string)

Lower$ Returns every character within the string as lower case Lower$(string)

Ltrim$ Returns string argument without leading spaces. Ltrim$(string)

Mid$ Returns (m characters of) the string from character n
onwards.

Mid$(string,n) or Mid$
(string,n,m)

Reply$ Used with the INPUT command Reply$(string)

Right$ Returns the n rightmost characters of string Right$(string,n)

Rtrim$ Returns string argument without trailing spaces Rtrim$(string)

Screen$ Returns the word found from the screen at x,y Screen$(x,y)

Trim$ Returns string argument without trailing or leading
spaces, and collapses multiple spaces

Trim$(string)

Upper$ Returns every character within the string as upper case Upper$(string)

Val Returns the numeric value of a character string Val (string)

Waitkey$ Waits for user to press a key, then returns that key as a
string

Waitkey$

Macro summary.

Using Procedures

Call procedures to perform specific discrete actions, and then return to the calling point in the program. Define procedures with the
SUB ... END SUB command, and call them using the CALL command.

To terminate a procedure (for example, on an error), use the EXIT SUB keyword. This returns control to the calling program.

Example
SUB greet(name AS STRING)

PRINT “Hello World from”;name
END SUB

:
:

CALL greet (“David B.”)
Syntax

Macro summary.

Macro summary

Command Description Example
CALL Calls a (previously-

defined) procedure.
DELAY, DELAYTILL Delays a set number of

seconds, or until a
specified time.

DELAY 5

DIM Declares a variable as
INTEGER or REAL.

DIM a AS INTEGER.

DO (WHILE) ...
LOOP

Starts a program loop,
continuing while the
WHILE condition holds,
exited when WHILE
condition is fulfilled.

LET A=10
DO WHILE A>=2
 LET A=A-1
 PRINT A
LOOP

END Stops a macro.
EXIT Exits from the current

loop or IF statement. For
example, to exit a FOR
loop.

EXIT FOR

FOR ... NEXT Creates a loop of a
specific duration.

FOR i = 1 TO 10

GOTO Transfers control to a
part of a program with a
pre-defined label.

L20: : PRINT A
GOTO L20

IF ... THEN ...
ELSEIF

Specifies one or more
actions to take if a
condition is fulfilled.

INPUT Allows you to input an
AiF reply into a string
vaariable.

LET Assigns a value to a
variable. Variables must
be declared with DIM
before being assigned.

DIM A AS INTEGER
LET A = 5.

PASSKEYS Suspends macro
processing to allow the
user to enter keystrokes
to the host.

PRINT Prints a text message to
the Host, or the session
screen, or to the status
bar.

PRINT “HELLO”

REM Used for code
comments.

REM This will automatically
log you onto a host

SELECT Selects alternative
actions based on
specified conditions.

SENDTERM Sends text to the host. SENDTERM PASSWORD,
CHR$(13)

SEND, SENDWIN Sends special
characters to the host, or
to the currently-active
Windows application.

WAIT (TIMEOUT) Waits for a host
response (optionally, for
a maximum timeout
period).

WAIT TIMEOUT 20

WHILE ... WEND Specifies a loop
containing one or more

DIM B AS INTEGER
 WHILE B >=1

instructions to be carried
out whilst a condition
holds.

 PRINT B
 LET B = B-1
WEND

Click here for a macro example

CALL

Use this command to call a previously-defined procedure. Depending on the procedure, the call may pass parameters to the
procedure.

Click here for information on using procedures.

Syntax

Macro summary.

DELAY

Use the DELAY command to insert a delay into your programs of a specified number of seconds. The following example will insert a
delay of 20 seconds.

Example
DELAY 20
Syntax

Macro summary.

DELAYTILL

Use the DELAYTILL command to insert a delay into your program, until a specified time. The following example will delay the macro
processing until 10:30.

Example
DELAYTILL 10:30
Syntax

Macro summary.

DO

This command allows you to create a program loop. This loop will end when the pre-specified condition is fulfilled. Use the EXIT DO
keyword to exit the loop early (for example, on error).

Example 1
LET a=10
DO WHILE a>=2

LET a=a-1
PRINT a

LOOP
Example 2

LET a=1
DO

LET a=a+1
PRINT a

LOOP UNTIL a>10
Syntax

Macro summary.

END

Use this command to stop your programs (under normal circumstances).

Syntax

Macro summary.

EXIT

Use this command within a loop (whether FOR, WHILE, DO, SELECT or WAIT), to exit from the current loop in your program.

Alternatively, you can add the name of the loop as a qualifier, for example EXIT FOR.

Example
DIM i as integer

:
:

FOR i = 0 TO 10
IF a = 0 THEN

REM At end of list, jump to after NEXT loop
EXIT

ENDIF
NEXT i

Syntax

Macro summary.

FOR ... NEXT

Use this command to create a loop of a specific duration, counting up from one value to another.

Use the STEP keyword to alter the size of the step when counting (by default, STEP 1 is assumed).

Use the EXIT FOR keyword to exit the loop early (for example, on error).

Example
FOR b = 1 TO 17 STEP 4

PRINT b
NEXT b

Syntax

Macro summary.

GOTO

Use this command to transfer control to a part of your program with the pre-defined label. The label must not be purely numeric.

Example
LABEL:
PRINT a

:
:

GOTO LABEL
Syntax

Macro summary.

IF ... THEN ... ELSEIF

Use this command to specify one or more actions to be taken if a condition is or is not fulfilled.

Use the ELSEIF keyword to specify one or more alternative conditions to check for, if the first condition is not fulfilled.

Example
IF a<=b THEN

IF a=b THEN
PRINT "Equality"

ENDIF
ELSEIF a<b THEN

PRINT "a smaller than b"
EXIT IF

ELSE
PRINT “a larger than b”

ENDIF
Syntax

Macro summary.

INPUT

Use this command to input an AiF reply into a string variable. The format of the reply will be:
<STX>n<CR>message<CR>

Use the Reply$() function to read message, and the id$() function to read n. These components depend on the AiF escape
sequence sent, and the reply received. Refer to Chapters 3 and 4 for details of AiF escape sequences available.

Example

This example prints (sends) an AiF escape sequence determined by the string sequence$, then reads the reply into the string
return$. It then reads the message component of the reply into the string msg$.

In this example, the AiF sequence sent asks HOSTACCESS for its version number, then puts the reply into a string, and prints this
information to the screen.

DIM Sequence$ as STRING
DIM msg$ as STRING
DIM return$ as STRING

:
:

Sequence$ = CHR$(27) + “[=1c”
Print sequence$: REM send AiF sequence
REM
Input return$: REM read reply
msg$ = reply$(return$)
PRINT “Version Number is: ” + msg$

Note: sequence$, return$ and msg$ need to be pre-defined via the DIM command as shown. Reply$ is a system function.

Macro summary.

LET

Use this command to assign a value to a variable.

Example
LET a = 10
Syntax

Macro summary.

PASSKEYS

Use this command to suspend macro processing, to allow the user to enter keystrokes be passed to the host. The user keyboard
input is passed until the Enter key is pressed. This Enter key is passed to the host as a carriage return and the macro the resumes
processing at the next line.

For example, a “login” macro can effectively pause whilst a user types in a unique password (not held within the macro) and then
continue with invoking the user’s host application.

Syntax

Macro summary.

PRINT

Use this command to print out a text message, to the Host, or the session screen, or to the status bar.

The PRINT command moves onto the next line when finished, unless the PRINT statement ends in a semi-colon (“;”) or comma (“,”)
character.

Use the comma character to separate printed items with a tab.

Use the semi-colon character to print items with no spacing.

Use the plus character to print items with no spacing.

Example

PRINT “Hello” , “O” , “There”

PRINT “Hello” ; “O” ; “There”

PRINT “Hello” + “O” + “There”

Syntax

Macro summary.

REM

Use this command to put comments in your code.

Syntax

Macro summary.

SELECT

Use this command to define alternative actions based on specified conditions, more easily than with the IF command.

Use the DEFAULT keyword to specify the default action to be taken (if no conditions are met).

Note: you can use the EXIT SELECT keyword to exit from the SELECT construct.

Syntax

Macro summary.

SENDTERM

Use this command to send text to the host.

Syntax

Macro summary.

SEND and SENDWIN

Use the SEND command to send special character codes to the host. Use the SENDWIN command to send special character codes
to the currently-active Windows application.

Example

SEND “‘Hello There’ CR”

Syntax

Click here to display keycode characters.

Macro summary.

Keycode

Keycode is one of the mnemonics or special characters defined below:

Mnemonic Represents Character Represents

LA Left Arrow ^ Control function

RA Right Arrow @ Alt function

UA Up Arrow # Shift function

DA Down Arrow F Function key

PU Page Up S Shift + function key

PD Page Down C Control + Function key

HM Home A Alt + Function key

EN End Wnn Wait time in 55 millisecond
units (clock ticks, about
18.2 per second), where
nn is from 1 to 255.

IN Insert WP Wait for user key and then
pass it on.

DE Delete WE Wait for user key and then
throw it away.

TA / TB Tab WB Wait until key buffer is
empty.

ST / BT Shift Tab
(=Back Tab)

BR Break

ES Escape ‘text’ Enclose literal text within
single quotes.

BS Backspace

SP Space bar

CR Enter

LF Ctrl-Enter

DQ The double
quote "

SQ The single
quote '

WAIT

Use this command to wait for a host response.

Use the TIMEOUT keyword to specify a maximum wait period, and then the same keyword (after a CASE keyword) to specify any
action to be taken after that period has passed.

Use the CASE keyword to specify the action to be taken if a specified string is seen.

Note: You can use the EXIT WAIT keyword to exit from the WAIT loop.

Syntax

Example
DO
 WAIT TIMEOUT 30
 CASE “password:”

 PASSKEYS : REM allow user to enter password
 CASE “login:”

 SENDTERM “David” : REM enter a login name
 CASE “$ “ : REM end script at the prompt
 END
 CASE “(ansi)” : REM Send terminal type
 SENDTERM “VT100”

 TIMEOUT
 PRINT “Give up”

END WAIT
LOOP

Macro summary.

WHILE

Use this command to specify a loop containing one or more instructions to be carried out whilst a condition holds.

Use the EXIT WHILE keyword to exit the loop early (for example, on error)

Example
DIM t AS Integer
LET b = 10
WHILE b >=1

PRINT b
LET b = b -1

WEND
Syntax

Macro summary.

Macro Example

The following example demonstrates the power of the macro language. This is an auto-login facility, which will automatically log you
into a Unix machine, given the correct password.
DIM retries AS Integer
DIM psw$ AS String

DIM i AS Integer
DIM s AS String

FOR retries = 1 TO 3
 SEND "'root' CR" : REM send user name to host
 WAIT TIMEOUT 10 : REM wait 10 seconds
 CASE "Password:"
 s= Chr$(27) + "_" + 5 + ";" + 10 + ";" + 16 + ";" + 16 +
 ";1;0;0J" + ";" + "Password:" + Chr$(27) + "\"
 PRINT s;
 INPUT psw$: REM read user reply (password)
 psw$= reply$(psw$)
 SENDTERM psw$,chr$(13) : REM send password to host
 DEFAULT
 PRINT "No idea. Any clues?"
 EXIT FOR
 END WAIT
 REM if host asks for terminal type, reply with “vt220”
 WAIT TIMEOUT 4
 CASE "(ansi) "
 SEND "'vt220' CR"
 DEFAULT
 EXIT FOR
 END WAIT

 WAIT TIMEOUT 4 : REM wait for host to print a prompt
 CASE "# "
 EXIT FOR
 END WAIT
NEXT : REM And try again

IF retries >= 3 THEN
 PRINT CHR$(27) + "_X" + CHR$(27) + "\";
REM terminate HOSTACCESS after 3 tries
ENDIF

Describing Images

When using Windows AiF escape sequences that refer to buttons, you can describe button images for a particular button in great
detail.

· You can define images to suit your requirements

· You can store image definitions in your (user’s) termw.ini file, for widespread or repeated use in your applications programs

· You can display bitmaps or icons, either as separate files (.bmp or .ico files) or as part of a resource (a .exe or .dll file)

The facilities described here give extensive and powerful tools to customize your display. However, you can use the most simple
features, to display images quickly.

How to describe images.
Pre-defining images.
Defining a simple image.
Colour substitution.
Defining labeled images.
Defining button windows for images.

How to Describe Images

There are three ways of referring to images:

Simple images.
Images with labels attached.
Images with button window descriptions.

To describe images in a Windows AiF escape sequence, use an image specification string. This can be embedded within an AiF
escape sequence, or can be pre-defined in the user’s host.ini file. Click here for a description of how to create your own
labeled images.

An image specification string contains several parameters, separated by commas. Each parameter takes the form:

name = value

Where:

name Is the parameter name.

value Is the value for that name.

For example, filename=c:\images\helpbut.bmp is a parameter.

As each parameter is named, parameter order is unimportant, although we recommend that you follow the documented order for
clarity and ease of use.

Conventions Used

In the following topics, image specification strings are described as follows:

{parameter1},{parameter2}, ... , {parameterN}

where parameter1 ... parameterN are the names of the parameters within the string. Optional parameters are enclosed in braces.

Many parameter names and values can be abbreviated in use. For example, filename can be abbreviated to f, and bmp can be
abbreviated to b. These abbreviations are shown in parentheses. We recommend you only abbreviate after developing and testing
your code, to increase readability during development.

Pre-defining Images

You can define and store a set of image specification strings, with labels, for your own images, in the user’s host.ini file. You can
then access these images from an AiF sequence, using the images labels.

To create a labeled image:

1. Define an image specification string for your image

2. .Label this string

3. Place the labeled string in the HOST.INI file in your
HOSTACCESS directory.

Store simple bitmap image strings in the [dibs] section.

Store strings for bitmap images with labels in the [images]
section

Store strings for bitmap images with button window
descriptions in the [buttons] section.

This labeling feature simplifies image use within Windows AiF escape sequences. Instead of hard-coding image specification strings
directly into the AiF sequence, you can simply refer to their label in the host.ini file.

We recommend that you make full use of this facility, for any but the most simple specification strings.

HOSTACCESS also has a series of pre-defined images for you to use - these images are described in the following sections.

Using Named Images

To use a named image from an AiF sequence, refer to it by name.

To use a named image containing a label or a button window description from an AiF sequence, precede the name with a @
character.

Example

The following section could be in a typical HOST.INI file:

[images]

frog = filetype=bmp, filename=frog, su = 1-black

To use this image, you can then refer to it as @frog. For example, you could use:

ESC_31 ; 10 ; 10 ; 5 ; 5 w animal ; @frog ESC\

This gives a 5x5 push-button called animal at (10,10), using the string labeled frog in the [images] section of the user’s host.ini file.

Defining a simple image

To specify a simple image, use a specification string as follows:

{filename},{filetype},{id},{tilesize},{subst}

Where:

Name Description

filename (f) File name of the image. A default file extension is added,
depending on the file type (see below). There is no default file
name. You must give this parameter, except when accessing
an internal resource in HOST.EXE. The default file location is
the current working directory. To specify another location, give
the full path name.

filetype (ft) File type. Can be any of the following:

bmp (b) - .bmp file (the default)

bmpexe (be) - bitmap in a .exe or .dll file

ico (i) - .ico file

icoexe (ie) - icon in .exe or .dll file (i.e., in any file in ‘new
executable’ format)

id Resource id. This selects the particular icon or bitmap resource
from a .exe/.dll file. It may be a name or a number. There is no
default for this - it must be given if the bitmap is being taken
from a .exe/.dll file

tilesize (ts) Tile size in pixels, given as x/y. Default is 57 by 33, which is the
standard size used in dialog boxes for Borland-style bitmap
push buttons. e.g. tilesize = 16/16

subst (su) Use to substitute colours in an image - typically, to substitute
the terminal background colour for the background colour of
the bitmaps. Substitution may be repeated.

Example

To use the file ‘frog.bmp’, in the directory ‘c:\pictures’, use the following specification string:

file=c:\pictures\frog

Since no extension was given, .bmp is assumed as the default file type:

To use this string in an AiF escape sequence, use:

ESC_31 ; 10 ; 10 ; 5 ; 5 w animal ; file=c:\pictures\frog ESC\

This creates and displays a 5x5 push-button named animal at (10,10), using our “frog.bmp” file.

Colour Substitution

To substitute a colour, use either:

N-R-G-B

or:

N-name

where N is the new (replacement) colour, and R-G-B or name specifies the old colour. These parameters are described in the
following sections.

Specifying the New Colour

N is the new (replacement) colour. This is either a terminal window colour number from 1-16, or is a Windows system colour, taken
from the following list:

Name Colour Name Colour

bg desktop background hi highlighted
background

menu menu background hitext highlighted text

win window background btnface (bf) button background

wintext window text btntext (bt) button text

menutext menu text btnshadow (bs) button edge colour

appworkspace background colour
for MDI apps

btnhi button highlight
colour

greytext grey text colour

Specifying the Old Colour

To specify the colour to be replaced, you can:

· Define the colour in terms of its R-G-B (Red-Green-Blue) components, where R, G and B are in the range 0..255. For example,
0-0-255 is full intensity blue, and 0-0-0 is full intensity black

· Use a pre-defined colour name, as a shortcut way of specifying common colours:

red (r) blue (b) magenta (m) white (w)

green (g) cyan (c) yellow (y) black (b)

For example, to substitute all black pixels with colour 1 from the application palette, use:
su=1-black

Note: this colour must exactly match the colour of the image

Examples: colour substitution

To use the file frog in your current directory, substituting all black pixels (RGB=0,0,0) with colour 1 from the application palette, use:
f=frog,su=1-bl

To use a bitmap in a .exe format file called ‘bitmaps.dll’, with resource number 116, tile size 48x64, and replace green pixels
(RGB=0,255,0) with the system’s button face colour, use:

f=bitmaps.dll,ft=be,id=116,ts=48/64,su=btnface-green

To display an image based on this string, you could use the following AiF escape sequence:
ESC_31 ; 2; 2 ; 5 ; 5 w icon1 ; f=bitmaps.dll,ft=be,id=116,ts=48/64,su=btnface-green ESC\

This displays a 2x2 image named icon1 at (5,5), using the string described above. See Chapter 3 for further details of AiF escape
sequences.

Inbuilt Images

The following bitmap images are built into HOSTACCESS, and can be used by the host:

Name Description

_hand bitmap used to display the open palm image used in warning
dialogs.

_applogo The ‘application logo’ - the bitmap image for the product, as
shown in the about and splash boxes.

_logo The ‘Company logo’ - the bitmap image for the Company
producing the product, as shown in the About... and splash
boxes.

_sp Standard Push Button images:

This is a tiled bitmap image. Tile 1= Cross., Tile 2= Help, Tile 3=
No, Tile 4 = Yes/OK

_sm Standard Message Box images. This is where the large
exclamation mark, info symbol and question mark bitmaps are
defined. Note that the ‘hand’ symbol logically belongs to this set,
but is in a separate bitmap because it is a different size. Tile
1=info, Tile 2=exclamation, Tile 3=question mark.

You can also define your own built-in bitmaps.

Click here for details.

Defining Labeled Images

To include text labels in your image, use the following specification string:
{bitmap/image parameters},{label},{labelpos},{sm},{mag},{tile}

If you have a named bitmap image pre-defined in your host.ini file, use the bitmap parameter to refer to it. Click here for details
of defining named images.

If you wish to define a whole image in one specification, use image parameters. These are the standard parameters for defining an
image.

 Click here for details.

Name Value

bitmap (bm) The label of a pre-defined bitmap image.Click here
for details.

image
parameters

The filename, filetype, id, tilesize, and subst parameters,
as for a simple bitmap specification string. for details.

label (l) Text for label for the image, drawn at a position offset from
the top-left of the output rectangle by the ‘labelpos’ value.

labelpos (lp) Label position, given as x/y, used to decide the origin of the
start of the text label. Default = (0,0).

sm Stretch mode. Possible values are:

clip (c) clip the image to the destination display
rectangle.

mag (m) magnify the image as much as possible, whilst
retaining aspect ratio.

fill (f) stretch/compress the image to fit the destination
rectangle exactly. (default)

mag (m) Magnification factor. A positive or negative integer,
controlling the size of an image. A negative number will
reduce the size, a positive number will increase the size.

For example, specify -2 to divide the size by 2, or 3 to
magnify the size by 3.

Obviously, -1, 0 and 1 will have no effect.

tile (tl) This specifies the tile number for the image. Used when
the images is tiled, holding an array of separate images of
the same size. The first tile is no. 1.

The default is not to select a tile - i.e., the whole of the
source image.

Specifying Text-Only Labels

To specify text labels (without any bitmap images), use the following image specification string:
type=t,{label},{size}

Name Value

type (t) Sets the type: type=t (or type=text) sets image as a text
label

label (l) Text for label. This string will be drawn centered in the
output rectangle.

size (s) Specifies the natural size of the button, in pixels. This
defaults to the size of the rectangle needed to exactly hold
the label, using whatever font the image is being output
with.

Example: Using Pre-defined images

To use an image based on a pre-defined bitmap image named ‘_sp’, with tile 1, label position x=26 y=17, label ‘Cancel’, you could
use either:

bitmap=_sp, type=bitmap, tile=1, labelpos=26/17, label=Cancel

or
bm=_sp, tl=1, lp=26/17, l=Cancel

Note: This is the exact definition of the image used in the standard Cancel push button.

To use this image in a 2x4 push-button named cancel at (5,5), use the following AiF escape sequence:
ESC_31 ; 2; 4 ; 5 ; 5 w cancel ; bm=_sp, tl=1, lp=26/17, l=Cancel ESC\

To use a bitmap image, setting natural size to a magnification of 2, when rendering the image is to be stretched/compressed whist
retaining its aspect ratio, from the file frog.bmp, and substituting all black pixels (RGB = 0,0,0) with colour 1 from the application
palette, use:

f=frog.bmp, m=2, sm=mag, ft=bmp, su=1-1-black

To use a text based image (i.e. an image not based on a bitmap), with label ‘Cancel’, and natural size 100x32 pixels, use:
t=t, l=Cancel, s=100/32

This might be used to describe a textual button in a dialog box.

Click here for further information on the AiF sequences used to create buttons.

Inbuilt Labeled Images

There are several inbuilt image specifications that you can use:

Name Description

_cancel The image and label ‘Cancel’ to go inside a Borland-style push
button.

_help The image and label ‘Help to go inside a Borland-style push
button.

_yes The image and label ‘Yes’ to go inside a Borland-style push
button.

_no The image and label ‘No’ to go inside a Borland-style push button.

_ok The image and label ‘OK’ to go inside a Borland-style push
button.

_hand The image to go in a warning message box.

_logo The image used in the About... and splash dialogs holding the
Company logo.

_applogo The image used in the About... and splash dialogs holding the
product logo.

_pling The image to go in an error message box.

_info The image to go in an information message box.

_question The image to go in a question message box.

Defining Button Windows for Images

To include a button window description in your image specification string, use the following parameters:
{image parameters},{border},{image}

Name Value

image
parameters

The filename, filetype, id, tilesize, and subst parameters, as
for a bitmap image specification string. Click here for
details.

border (bd) Specifies the type of border to be drawn round the button.

Pushedout (out) 2 pixel pushed-out frame round
contents. Suited for decoration buttons.
Uses white for top left colour, and
BTNSHADOW for bottom right colour.
This is the default

Push (p) Push button borders. Sculpted 3 pixel
wide border around contents, displayed
either as pushed in or out depending on
button select state. Uses standard
Windows button colours BTNFACE
BTNSHADOW and BTNHILIGHT.

Frame (f) Single pixel frame round contents.
Suited for decoration buttons. Frame
drawn in Windows WINDOWFRAME
colour.

Pushedin (in) 2 pixel pushed-in frame round contents.
Suited for decoration buttons. Uses
BTNSHADOW for top left colour, and
white for bottom right colour. This is the
default.

Shadowed

(shad)

1 pixel frame around contents (as for
‘frame’ style), plus a 3 pixel shadow to
the bottom and right, in BTNSHADOW
colour.

None (n) No border.

image (im) Used to refer to a named button specification for the button
contents. Click here details of naming images.

Push button examples

To use an image with label ‘Cancel’, with push button borders, use:
border=p,type=t, label=Cancel

This is a text push button.

To use the image labeled ‘_question’, with pushed-in border, use:
border=in,image=_question

This is the decorative sculpted question mark you sometimes see in Borland-style dialog boxes.

To use the image labeled ‘_no’, use:
bd=p,im=_no

This is a standard ‘no’ button used in dialogs.

To frame borders around the image in ‘frog.bmp’, which is to be stretched to fit the button size, use:
border=frame, file=frog

To display this image, you could use the following AiF escape sequence:
ESC_32 ; 5; 5 ; 15 ; 5 w toad ; border=frame, file=frogESC\

This creates a 5x5 image labeled toad at (15,5) from the above specification string.

Click here for further information on buttons.

Inbuilt button-images

The following are inbuilt into HOSTACCESS:

Name Description

_pling Decorative pushed-in exclamation mark button. Used in
message boxes.

_hand Decorative pushed-in hand button. Used in message boxes.

_question Decorative pushed-in question mark button. Used in message
boxes.

_info Decorative pushed-in information button. Used in message
boxes.

_logo Decorative pushed-in Company logo button. Used in message
boxes.

_applogo Decorative pushed-in product logo button. Used in message
boxes.

_ok Standard Borland style OK push button.

_cancel Standard Borland style Cancel push button.

_yes Standard Borland style Yes push button.

_no Standard Borland style No push button.

_help Standard Borland style Help push button.

